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ABSTRACT. Ruzigass (Urochloa ruziziensis) is a forage crop with high agronomic and nutritional value. 

Plant breeders often assess ruzigrass phenotypic traits via vigor ratings. The analyses of these categorical 

data often fail to meet the usual statistical assumptions. In this study, we compared four fittings of linear 

models for vigor rating analyses: i) a linear mixed model for the original scale (LMM), ii) a linear mixed 

model for a Box–Cox transformed scale (BCLMM), iii) a multinomial generalized mixed model using a probit 

link function, also known as threshold model (GLMM), and iv) a hierarchical Bayesian model, also referred 

to as a Bayesian threshold model (HBM). Additionally, biomass yield was assessed, and the indirect 

selection of high-performing genotypes was evaluated. The experimental design included 2,204 ruzigrass 

genotypes randomized into augmented blocks. Six graders visually assessed each plot using a rating scale. 

Fitting methods were sampled from three scenarios, employing one, three, or six graders. A nonnull genetic 

variance component was detected for vigor and biomass yield traits. Except for BCLMM, the methods for 

analyzing vigor ratings were correlated. The correlations and coincidence indices for selecting genotypes 

increased with the number of graders. The analysis of vigor ratings under Gaussian approximations is riskier 

when a single grader is used to evaluate genotypes. The GLMM and HBM perform similarly and are more 

recommended and suitable analyses of vigor ratings when selecting high-performing ruzigrass genotypes. 

Keywords: Urochloa ruziziensis; selection efficiency; Box-Cox transformation; threshold model; mixed model approach; 

forage breeding. 
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Introduction1 

Ruzigass [Urochloa ruziziensis (R. Germ. & CM Evrard) Crins.], syn. Brachiaria ruziziensis, is a crop widely 

used in forage breeding programs due to its high agronomic and nutritional value (Marcelino et al., 2020; 

Nouhoun et al., 2022). It is an obligate sexual species under ploidy level (2n = 2x = 18). In a tetraploid level 

(2n = 4x = 36), it has been used to obtain interspecific hybrids (Pereira et al., 2005; Timbó et al., 2014). 

The development of a new ruzigrass cultivar requires selecting and recombining the best-performing 

genotypes across multiple breeding cycles to accumulate favorable alleles and produce desirable agronomic 

traits. Assessing these traits in forage crops can be costly, time-consuming, and labor-intensive, depending 

on the stage and size of the trials. Forage breeders have often assigned categorical ratings to discriminate 

genotypes in field evaluations for several important traits, such as resistance to pests (Silva et al., 2013), 

regrowth capacity (Gouveia et al., 2022), turf quality (Whitman et al., 2022), flowering (Marcon et al., 2021), 

and biomass production (Price & Casler, 2014; Teixeira et al., 2020; Dias et al., 2022). The Embrapa Dairy 

Cattle Research Center has used vigor ratings to select from many genotypes at the early stages of the 

ruzigrass breeding program. The vigor rating was devised to adjust the biomass rating by considering various 

plant aspects, such as health, size of leaves and stalks, height, regrowth, and tillering. However, the selection 

of genotypes has been based solely on realized field ratings, with no further statistical analysis. 

Some statistical analyses have been used to address ratings or scores provided by plant breeders. Ratings 

are ordinal categorical variables (Agresti, 2002); however, average ratings have often been successfully 
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approximated by Gaussian distributions through the central limit theorem (Mood et al., 1974). Sometimes, 

this assumption does not hold, and nonlinear data transformations have been applied (e.g., Box & Cox, 1964). The 

search for a model that accurately represents the data may improve the interpretation of parameters and predictive 

ability, thus avoiding spurious results (Jaeger, 2008; Bolker et al., 2009; Stroup, 2015). For breeding purposes, this 

could avoid erroneous genotype rankings and lead to more efficient selection. 

Plant breeders are continuously searching for flexible methods to analyze data. New statistical tools 

available in free software (R packages) have been used to avoid transforming data into count data or 

proportions (Venables & Ripley, 2002; Bates et al., 2015; Christensen, 2019; Hadfield, 2010; R Core Team, 

2020). Generalized linear mixed models can be fit to different distributions of the exponential family and 

are an extension of linear mixed models (McCulloch & Searle, 2004). The exponential family unifies 

several random variables, among which a multinomial distribution can be employed for ordinal 

categorical data (Nelder & Wedderburn, 1972). Those models could be fit either in a frequentist 

(McCulloch & Searle, 2004) or a Bayesian approach (Gianola & Foulley, 1983; Gianola & Fernando, 1986). 

In the Bayesian approach, a hierarchical model formulation is needed to construct prior distributions, 

from which joint posterior distributions for parameters and data can be determined. This method 

provides a convenient way to infer marginal distributions for parameters. Gouy et al. (2013) emphasized 

the suitability of threshold models under a hierarchical Bayesian framework for analyzing rust resistance 

ratings to select sugarcane clones. Correa et al. (2016) used the usual hierarchical formulation for 

threshold models from animal and plant breeding purposes. 

In this study, we aim to find flexible models to analyze vigor ratings for efficiently selecting high-

performing ruzigrass genotypes by comparing four methods: i) a linear mixed model at the original scale 

(LMM), ii) a linear mixed model at the transformed Box–Cox scale (BCLMM), iii) a multinomial generalized 

linear mixed model (GLMM), and iv) a hierarchical Bayesian model (HBM). The analyses use R packages. 

Additionally, the effect of having multiple graders in the final selection of ruzigrass genotypes using different 

methods is investigated. 

Material and methods 

Location 

The study was conducted at the Embrapa Dairy Cattle experimental station, located at 21°33' S latitude 

and 43°06' W longitude, at 410 m above sea level in Coronel Pacheco, Minas Gerais State, Brazil. The soil is 

predominantly classified as red yellow Argisol (Santos et al., 2006). According to Ko ̈ppen, the climate is 

classified as humid subtropical (Cwa type mesothermic), with an average annual temperature of 19°C. Winters 

are commonly dry and cold, while summers are rainy with moderately high temperatures. The average annual 

rainfall is 1,536 mm. 

Experimental Design and Germplasm 

In August 2011, the experiment was laid out as an augmented block design with 51 blocks, each containing 

between 28 to 72 genotypes. The nonreplicated treatments consisted of 2,204 ruzigrass genotypes derived 

from selected seeds during the second recurrent intraspecific forage breeding program cycle at Embrapa Dairy 

Cattle. Marandu (U. brizantha) and Basilisk (U. decumbens) cultivars were used as controls and were thus 

replicated in all blocks. The plants were transplanted, and the plots consisted of a single plant with an average 

area of 1.5 m2, spaced one meter apart. 

A total of 350 kg of the formula 8-28-16 (nitrogen‒phosphorus‒potassium) was applied per hectare. One 

ton of the formula 20-05-20 (nitrogen‒phosphorus‒potassium) was top-dressed per hectare, partitioned 

across each cut during the rainy season. Manual weeding was performed as needed, and a homogenizing cut 

was carried out at the beginning of December 2011. In 2012, two evaluation cuts were performed, one in 

January and a second approximately 40 days later. For this study, only the first evaluation cut was analyzed. 

Traits Evaluated 

Vigor rating and biomass yield were assessed per plot. Visual ratings of plant vigor ranged from 1 to 5 as follows: 

1 being very bad, 2 bad, 3 regular, 4 good, and 5 very good (Fonseca et al., 2020). Six different graders performed 

visual assessments immediately before the cutting. To evaluate biomass yields, the plots were cut at 5 cm above 
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the soil level, and biomass was weighed using a portable suspension scale, measured in grams. 

Statistical analysis 

Biomass yield 

Biomass yield data were checked for outliers, and their residuals were tested for normality. The residuals 

were inspected using both the Shapiro‒Wilk test (Shapiro & Wilk, 1965) and diagnostic plots (Q‒Q plot) via 

the shapiro.test and qqnorm functions of the stats R package (R Core Team, 2020). The model presented in 

Fonseca et al. (2020) was fitted as follows: 

y = Xμ + Z₁b + Z₂g + e,          (1) 

where 𝑦 is the vector of biomass yield; 𝜇 is the intercept; b is the vector of block effects, 𝑏~𝑁(0, 𝐼𝜎𝑏
2); g is the 

vector of genotype effects, 𝑔~𝑁(0, 𝐼𝜎𝑔
2); e is the vector of errors, 𝑒~𝑁(0, 𝐼𝜎𝑒

2); and X, 𝑍1, and 𝑍2 are the design 

matrices of the effects 𝜇, b, and g, respectively. The estimation of fixed effects (best linear unbiased estimator 

- BLUE) and the prediction of random effects (best linear unbiased prediction - BLUP) were performed using 

Henderson’s system of equations (Henderson, 1984). Variance components were estimated using the 

restricted maximum likelihood (REML) method (Patterson & Thompson, 1971). The significance of variance 

components was evaluated by the likelihood ratio test at a significance level of 5%, using the lmerTest package 

(Kuznetsova et al., 2017) available in R (R Core Team, 2020). The lmer function of the lme4 R package was used 

to fit the linear mixed model (Bates et al., 2015). Repeatability (R) was calculated following Cullis et al. (2006), 

as presented in Schmidt et al. (2019): 𝑅𝐶𝑢𝑙𝑙𝑖𝑠
2 = 1 − (𝜈𝛥..

𝐵𝐿𝑈𝑃
2𝜎𝑔

2⁄ ), where 𝜈𝛥..
𝐵𝐿𝑈𝑃

 is the mean variance of the 

difference between two BLUPs and 𝜎𝑔
2 is the genotypic variance based on biomass. 

Vigor rating 

Vigor ratings were analyzed  using four approaches: i) a linear mixed model in the original scale (LMM), ii) a 

linear mixed model in the transformed Box–Cox scale (BCLMM), iii) a multinomial generalized linear mixed model 

(GLMM), and iv) a multinomial hierarchical Bayesian model (HBM) across three distinct scenarios as follows: 

Scenario 1 – One grader 

To analyze the vigor rating via the LMM, Model (1) was applied, replacing the response variable biomass 

with a vigor rating. Similarly, for the BCLMM, Model (1) was applied to adjust vigor ratings under the Box–

Cox transformation scale using the following expression: 

𝑦𝑡(𝜆) = {
𝑦𝜆−1

𝜆
, 𝑖𝑓𝜆 ≠ 0

𝑙𝑜𝑔𝑦, 𝑖𝑓𝜆 = 0
, 

where λ is the Box‒Cox transformation parameter; y is the vector of vigor ratings; and yₜ(λ) is the vector of 

transformed vigor ratings. The λ estimate was calculated by maximizing the likelihood function (Box & Cox, 

1964) of Model (1), assuming that all effects were fixed. For this purpose, the boxcox function available in the 

MASS R package was used (Venables & Ripley, 2002). The normality of the residuals was checked using the 

Shapiro‒Wilk test (Shapiro & Wilk, 1965) and the Q‒Q plot procedure via the respective functions shapiro.test 

and qqnorm functions from stats R package (R Core Team, 2020). 

To investigate the vigor ratings via the GLMM under a frequentist approach, the data were analyzed via a 

threshold model assuming a multinomial distribution (Agresti, 2002; Agresti, 2007) and a probit link function 

as follows: 

𝛷−1(𝜋𝑐|𝜇, 𝑏, 𝑔) = 𝑋𝜇 + 𝑍1𝑏 + 𝑍2𝑔,          (2) 

where 𝛷−1 is the probit link function; 𝜋𝑐 is the probability associated with each category; 𝑐 is the number of 

categories (i.e., c=5 in this study); 𝜇 is the intercept; b is the vector of block effects, 𝑏~𝑁(0, 𝐼𝜎𝑏
2); g is the vector 

of genotype effects, 𝑔~𝑁(0, 𝐼𝜎𝑔
2); and X, 𝑍1, and 𝑍2 are the design matrices for the effects 𝜇, b and g, 

respectively. Maximum likelihood estimates of parameters and BLUPs of genotypic effects were obtained via 

Laplace approximation to compute the likelihood function (Pinheiro & Chao, 2006). The clmm function of the 

ordinal R package was used (Christensen, 2019). The significance values of variance components were 

assessed via the likelihood ratio test. Repeatability of vigor ratings under the LMM, BCLMM, and GLMM was 

calculated following Cullis et al. (2006), as previously described. 
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For the analysis of vigor ratings via the HBM, i.e., the GLMM under a Bayesian approach, Model (2) was 

extended to incorporate priors for each effect. An inverse Gamma prior was used for block and genotype effect, 

a noninformative prior for fixed effects, and a fixed prior of 1 for the residual (Hadfield, 2010). The model ran 

for 500,000 Markov chain Monte Carlo (MCMC) simulation iterations with a burn-in of 100,000 samples, 

thinning every 200 iterations, resulting in a posterior distribution of 2,000 samples of estimated parameters. The 

mean and highest posterior density (HPD) intervals were determined on the basis of the samples. The MCMCglmm 

function of the MCMCglmm R package was used (Hadfield, 2010). Repeatability was calculated following the standard 

repeatability procedure as 𝑅 = 𝜎̀𝑔
2 (𝜎̀𝑔

2 + 𝜎̀𝛷
2)⁄ , where 𝜎̀𝑔

2 is the genetic variance estimate and where 𝜎̀𝛷
2 is the probit 

distribution variance, which equals 1. All methods used to assess vigor ratings were applied for each grader. 

Scenario 2 – Three graders 

To analyze vigor ratings via the LMM and BCLMM, Model (1) was applied, and the average vigor rating was used 

as the response variable. Alternatively, for the GLMM and HBM, vigor ratings were analyzed via an extension of 

Model (2) to include the random effect of graders. Thus, these models allowed the vigor rating to be assessed under 

its original scale instead of the average of the vigor ratings. For the HBM, an inverse Gamma prior was used to 

model the grader effect. In this scenario, the same three randomly selected graders were used in all methods. 

b3) Scenario 3 – Six graders 

Similar models presented in scenario 2 were developed, considering all six graders involved in this study. 

Therefore, the only difference between scenarios 2 and 3 is the number of graders used to calculate the 

average vigor ratings for the LMM and BCLMM. For the GLMM and HBM, the difference is the inclusion of 

three graders within their grader effect. 

Comparison between vigor ratings and scenarios and their correspondence with biomass yield 

Correlation and selection efficiency 

Spearman correlations between biomass yields and vigor ratings were obtained from the BLUPs of the 

genotypes for all the scenarios and methods. The cor function from the stats R package was used (R Core 

Team, 2020). The selection efficiency was calculated following a modified version of the coincidence index 

(CI) proposed by Hamblin and Zimmermann (1986). Originally, the CI aimed to assess the proportion of 

coincident genotypes selected under two different planting systems, assuming a specific selection intensity 

(SI). In this study, CI was used to calculate the selection efficiency of each model to select the top 5% high-

performing genotypes via grades as follows: 𝐶𝐼 = (𝐴 − 𝐶) (𝐵 − 𝐶)⁄ , where A is the number of genotypes 

selected on the basis of both grade and biomass simultaneously; B is the top 5% of high-performing genotypes 

on the basis of biomass; and C is the expected number of coincident genotypes selected by chance, i.e., a 

proportion of B due to chance (C = B×0.05). 

Response to selection simulation 

Expected genetic gains based on direct and indirect selection were calculated considering the top 5% BLUP 

of genotypes. Responses to selection were presented on both normal and categorical scales. 

Results 

The genetic variance was significant for biomass yield and vigor ratings across all methods and scenarios 

(Table 1). The distribution of vigor ratings varied across graders (Figure 1), impacting the proportion of 

variance explained among different graders and methods (Figure 2). The repeatability for biomass yield was 

0.46, whereas for vigor ratings, such magnitudes varied from 0.35 (HBM) to 0.85 (BCLMM) in scenario 1 (one 

grader). For scenario 2 (three graders), substantial differences in repeatability, latent variables, and threshold 

estimates occurred between the GLMM and HBM methods. Alternatively, the LMM and BCLMM methods 

presented slight changes in terms of repeatability, although the genetic and residual variances varied in 

magnitude. There were minor variations from scenarios 2 to 3 when all six graders were assessed, with the 

exception of the range of values for the latent variable in the HBM. 

The normality of the vigor rating residuals was assessed before and after performing a Box‒Cox 

transformation via both a statistical test (Shapiro‒Wilk normality test) and diagnostic plots (Q‒Q plot). The 

results from both procedures revealed that the vigor rating residuals on the original scale did not follow a 



Modeling of vigor ratings in ruzigrass breeding 5 of 12 

Acta Scientiarum. Agronomy, v. 47, e72493, 2025 

normal distribution, regardless of the number of graders considered in the analysis. Additionally, the application 

of the Box–Cox transformation was not effective in ensuring normality of the residuals (data not shown). 

Table 1. Estimates of the means (µ), genetic variances (𝜎̂𝑔
2), error variances (𝜎̂𝑒

2), repeatability (R2), latent variables, and thresholds for 

biomass yields and vigor ratings across three scenarios. 

Scenario 1 (grader A) 

Parameter Biomass 
Vigor ratings 

LMM BCLMM GLMM HBM 

     LI 2.5% Posterior mean LS 2.5% 

μ 1.2 kg plant-1 2.83 14.24 - - - - 

𝜎̂𝑔
2 0.1418*   0.32* 180.92* 0.55* 0.25 0.56 0.92 

𝜎̂𝑒
2 0.1579 0.50 28.03 1.00 - 1.00 - 

𝑅2 0.46 0.38  0.85 0.34 0.20 0.35 0.48 

Latent variable - - - - 1.62 1.92 2.21 

Threshold 1 - - - -1.93 1.32 1.49 1.69 

Threshold 2 - - - -0.43 2.58 2.89 3.23 

Threshold 3 - - - 0.97 3.75 4.22 4.72 

Threshold 4 - - - 2.30 - - - 

Scenario 2 (graders A, B, and C) 

μ  3.37   71.7 - - - - 

𝜎̂𝑔
2    0.21*  3205.0*  3.00* 2.71 2.98 3.29 

𝜎̂𝑒
2  0.39 660.3 1.00 - 1.00 - 

R2  0.35   0.82 0.88 0.73 0.75 0.76 

Latent variable   - - - 0.53 4.16 7.99 

Threshold 1   - - -4.25 2.14 2.25 2.38 

Threshold 2   - - -1.98 4.39 4.55 4.71 

Threshold 3   - -  0.32 6.30 6.49 6.70 

Threshold 4   - -  2.26 - - - 

Scenario 3 (all graders) 

μ  3.07 63.18 - - - - 

𝜎̂𝑔
2  0.21* 3354.8* 2.72* 0.54 0.94 1.37 

𝜎̂𝑒
2  0.34 484.4 1.00 1.00 1.00 1.00 

R2  0.38   0.86 0.93 0.22 0.51 0.79 

Latent variable  - - - 2.07 3.49 5.08 

Threshold 1  - - -3.49 2.28 2.35 2.43 

Threshold 2  - - -1.14 4.39 4.49 4.59 

Threshold 3  - - 0.99 6.17 6.30 6.43 

Threshold 4    2.80 - - - 

*Significant by the likelihood ratio test at a p value<0.001; LMM: vigor ratings fitted by a linear mixed model; BCLMM: vigor ratings fitted by Box–Cox 

transformations; GLMM: vigor ratings fitted by a generalized linear mixed model; HBM: vigor ratings fitted by a hierarchical Bayesian model; IL: inferior 

limit; SL: superior limit. 

 

Figure 1. Distribution of vigor ratings across graders when assessing ruzigrass genotypes visually. 
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Figure 2. The proportion of variance components based on different graders and methods. 

The correlations (r) between the BLUPs of genotypes for vigor ratings obtained from different methods 

were high overall, ranging from 0.85 to 0.99 across the scenarios (Figures 3, 4, and 5). While the inclusion of 

graders slightly decreased the correlation between the BLUPs of genotypes for vigor ratings, the correlation 

between vigor ratings and biomass increased. This increase reflected the coincidence index estimates, whose 

values were highest for the GLMM (0.44) and HBM (0.43) (Figure 5). The coincidence index between vigor 

ratings across different methods was high overall, regardless of the scenario, except for the BCLMM (Figures 

3, 4, and 5). These results indicate the potential benefit of selecting high-performing genotypes at earlier 

stages of ruzigrass breeding via vigor ratings. Nonetheless, the method and the number of graders can limit 

the benefits of indirectly selecting genotypes. 

 

Figure 3. Spearman correlations and coincidence indices between the BLUPs of various genotypes for the biomass yields and vigor 

ratings using different methods in scenario 1 (one grader). 
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Figure 4. Spearman correlations and coincidence indices between the BLUPs of biomass yields and the BLUPS of average vigor ratings 

across different methods in scenario 2 (three graders). 

 

Figure 5. Spearman correlations and coincidence indices between the BLUPs of the biomass yields and the BLUPS of the vigor ratings 

across different methods for scenario 3 (six graders). 

Simulations based on the direct response to selection using the top 5% BLUP of genotypes revealed a 50% 

increase in biomass (Table 2), whereas the indirect response to selection reported relatively lower values. In 

scenario 1, vigor ratings resulted in an indirect response with approximately a 35% increase in biomass via 

the LMM, GLMM, and HBM, while the BCLMM resulted in an approximately 12% increase. Similar results were 

observed in scenarios 2 and 3, with a significant increase only when the BCLMM was applied. 

Table 2. Simulations based on direct and indirect responses to selection, considering the top 5% BLUPs of genotypes. 

  Response to selection (kg plot-1) 

Biomass 0.603 

 Scenario 1 Scenario 2 Scenario 3 

LMM 0.418 0.423 0.444 

BCLMM 0.140 0.273 0.232 

GLMM 0.418 0.442 0.435 

HBM 0.418 0.445 0.433 
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The application of generalized models using the probit link function provided estimates of thresholds 

between categories, allowing the representation of the response to selection based on the vigor ratings’ 

ordinal categorical scale (Figure 6). Moreover, these threshold estimates enabled estimation of the probability 

of a genotype being found in a given category. For example, approximately 80% of the genotypes were likely 

to be found in categories 2 and 3, whereas 2.71 and 1.05% of the genotypes were likely to be present in 

categories 1 and 5, respectively (red graph). After simulating the selection of the top 5% BLUP of genotypes 

on the basis of vigor ratings, there was an increase in the likelihood of finding genotypes in higher categories. 

For example, the probabilities of finding genotypes in categories 4 and 5 were 40.04 and 8.45%, respectively 

(blue graph), whereas these probabilities were significantly lower in the original population (red graph). 

 

Figure 6. Predictions of genetic gains based on the rating in scenario 1 for the HBM. 

Discussion 

The use of visual ratings in forage breeding is justified due to their feasibility and efficiency in indirectly 

selecting superior genotypes. However, the genetic architecture of each trait should be considered, as it 

influences selection efficiency. For example, qualitative traits, controlled by fewer loci and less influenced by 

the environment, can be efficiently assessed through ratings (i.e., grade scales). In contrast, for quantitative 

traits, ratings can also be useful if the correlations between the trait of interest and their corresponding 

ratings are relatively high. For example, Silva et al. (2013) used ratings to assess the genetic value of ruzigrass 

genotypes resistant to Collaria oleosa. Souza Sobrinho et al. (2010) indirectly selected ruzigrass genotypes 

that were resistant to two species of spittlebugs (Mahanarva spectabilis and Deois schach) via visual ratings. 

Riday (2009) reported the efficiency of visual ratings in selecting high-yielding red clover genotypes. In 

addition to their efficiency in selecting superior genotypes, visual ratings can also assist breeders in 

eliminating undesirable genotypes (Atkins, 1964; Burton, 1982). 

Notably, the vigor rating analyses presented herein in three different scenarios have specific uses based 

on the populations under investigation and the selection phase of the breeding pipeline. Breeding programs 

have distinct evaluation/selection phases that ultimately lead to new cultivars. As these phases progress and 

selections are made, genetic variances among genotypes diminish. The use of multiple graders enhances the 

method’s power to detect real differences between similar genotypes, thus increasing genetic gains (Fonseca 

et al., 2020). However, a single grader might be considered for selecting high-performing genotypes (or 

discarding poor ones) in the early stages of selection cycles where the genetic variances between genotypes 

are highest. This study focused on the evaluation of ruzigrass genotypes at early stages of a selection cycle 

following the forage breeding pipeline at Embrapa Dairy Cattle. Broad genetic variation in biomass yields and 

vigor ratings was observed, enabling the selection of superior genotypes. However, low repeatability estimates 

for both traits indicated challenges in assessing true genotypic merit, either due to i) pronounced 

environmental effect associated with the experimental design used (augmented block design) or ii) the 

quantitative genetic architecture of the traits under field evaluation (biomass yields and plant vigor ratings). 

Therefore, forage breeding programs that follow Embrapa Dairy Cattle should avoid the use of a single grader 

to perform biomass selection via vigor ratings. Although visual screening of ruzigrass during field evaluations 
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is possible, the effect of a single grader can vary considerably, ultimately impacting decisions. Fonseca et al. (2020) 

evaluated the number of graders for visual assessment, recommending at least three graders for ruzigrass. 

In addition to the variation related to the number of graders, other factors can influence important 

parameters estimates. For example, the variations in the repeatability estimates across different methods and 

scenarios reflected the scale used in the analysis. While the GLMM and HBM presented similar magnitudes 

due to both using the probit scale, the LMM assumed a normal scale, and the BCLMM assumed a scale derived 

from its lambda, thus resulting in different magnitudes. The high-repeatability estimates for the BCLMM in 

scenarios 1 and 2 should be interpreted cautiously. Besbes et al. (1993) also reported an increase in heritability 

when Box–Cox transformations were applied to transform data describing egg production in laying hens. The 

high magnitudes presented here become questionable when the model adjustments between methods are 

compared against each other. The BCLMM under scenarios 1 and 2 showed noticeably high deviance (data not 

shown), reinforcing the idea that data transformation can lead to spurious results (Jaeger, 2008; Bolker et al., 

2009; Stroup, 2015). 

The correlations between the BLUPs of biomass yields and the BLUPs of vigor ratings showed a strong 

positive relationship, supporting the efficiency of indirect selection (Figures 3, 4, and 5). Moreover, these 

positive relationships increased in scenarios 2 and 3 for all methods. A deeper analysis of the BCLMM 

scatterplot in scenario 1 (Figure 1) reveals the discretization of its BLUPs, which corresponds to the same 

number of categories (i.e., five) used for visually assessing genotypes. However, this discretization dissolved 

in the subsequent scenarios as the number of graders increased, leading to an approximation of the normal 

distribution of the vigor ratings, as suggested by the central limit theorem (Mood et al., 1974). Nevertheless, 

the approximation derived from the Box–Cox transformation did not assure normality in any scenario; thus, 

its application should be carried out with caution. Alternatively, the LMM provided comparable results when 

contrasted with the more flexible models (i.e., GLMM and HBM). This is likely due to the large number of 

genotypes in this trial (2004 unreplicated genotypes plus two checks), indicating that the central limit 

theorem is a robust principle and can support the analysis of vigor ratings via LMM even though some 

assumptions are violated. Furthermore, the LMM is simpler and less computationally demanding. However, 

it is expected that the GLMM and HBM provide better estimates when trials investigate fewer genotypes. 

Although the correlations between methods followed similar positive results, the CI estimates showed that 

BCLMM did not identify the top 5% high-performing ruzigrass genotypes. Therefore, the simulated increase 

in biomass derived from that analysis is likely due to random sampling. However, the LMM, GLMM, and HBM 

generated a significant response to selection (~37%) when compared to the response to selection on based on 

biomass per se (~50%). The biomass increases presented in this study were derived from simulations and 

should not be compared with actual selection responses documented elsewhere. These results were used to 

compare the effects of different methods to analyze vigor ratings and assess the benefits of using grade scales 

to evaluate forage biomass. 

Although different models may provide similar responses to selection, vigor rating adjustments via 

generalized models are more appropriate for statistical judgment (Jaeger, 2008; Bolker et al., 2009; Stroup, 

2015). Generalized models are more flexible because of their ability to model response variables via 

distributions that share similar properties unified by the exponential family (Nelder & Wedderburn, 1972). 

However, because of their intrinsic complexities, such models are often. overlooked in plant breeding. This 

study demonstrated the application of GLMM and HBM by incorporating a multinomial distribution and a 

probit link function via packages available in R (R Core Team, 2020). Compared with other distributions, 

multinomial distributions better describe ordinal categorical variables (e.g., vigor ratings) (Jansen, 1991; 

Agresti, 2002; Agresti, 2007) and enable threshold estimates between categories (Agresti, 2002; Gianola & 

Fernando, 1986); enabling results to be reported on their original scale. Falconer and Mackay (1996) 

highlighted the benefits of using a threshold model to classify genotypes according to their genetic merits. As 

shown in Figure 6, there was an approximately 80% chance of finding a genotype in categories 2 and 3, while 

this probability was only 1% for category 5 (red graph). After simulating the selection of the top 5% of the 

BLUPs in terms of vigor ratings, the probabilities of finding genotypes in categories 4 (40.04%) and 5 (8.45%) 

increased (blue graph). Thus, selecting genotypes with higher ratings might increase the probability of finding 

genotypes in higher categories in future breeding cycles. 
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Conclusion 

There are statistical alternatives for analyzing vigor ratings, including linear mixed models and 

generalized linear mixed models. However, some models can generate spurious results and should be used 

cautiously. The number of graders can affect decisions and ultimately limit the response to selection. 

Although there were no marked differences among the LMM, GLMM, and HBM, generalized models are most 

appropriate and informative for reporting vigor ratings due to their flexibility in incorporating distributions 

that effectively describe ordinal categorical scales. Vigor ratings can be used to select the best ruzigrass 

genotypes to optimize biomass yields during the early stages of a breeding program. 

Data availability 

There is no data to provide. 

Acknowledgements 

The authors thank Embrapa Dairy Cattle, the National Council for Scientific and Technological Development 

(CNPq - 315748/2021-4), the Coordination for the Improvement of Higher Education Personnel (CAPES) and the 

Minas Gerais State Research Support Foundation (FAPEMIG) for their financial support of this research. 

References 

Atkins, R. E. (1964). Visual selection for grain yield in barley. Crop Science, 4(5), 494-497. 

https://doi.org/10.2135/cropsci1964.0011183X000400050018x 

Agresti, A. (2002). Categorical data analysis (2nd ed.). John Wiley & Sons. 

Agresti, A. (2007). An introduction to categorical data analysis (2nd ed.). John Wiley & Sons. 

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. 

Journal of Statistical Software, 67(1), 1-48. https://doi.org/10.18637/jss.v067.i01 

Besbes, B., Ducrocq, V., Foulley, J.-L., Protais, M., Tavernier, A., Tixierboichard, M., & Beautnont, C. (1993). 

Box-Cox transformation of egg-production traits of laying hens to improve genetic parameter estimation 

and breeding evaluation. Livestock Production Science, 33(3/4), 313-326. https://doi.org/10.1016/0301-

6226(93)90010-F 

Bolker, B. M., Brooks, M. E., Clark, C. J., Geange, S. W., Poulsen, J. R., Stevens, M. H. H., & White, J.-S. S. 

(2009). Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology 

Evolution, 24(3), 127-135. https://doi.org/10.1016/j.tree.2008.10.008 

Box, G. E. P., & Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society, 

26(2), 211-243. https://doi.org/10.1111/J.2517-6161.1964.TB00553.X 

Burton, G. W. (1982). Improved recurrent restricted phenotypic selection increases Bahiagrass forage yields. 

Crop Science, 22(5), 1058–1061. https://doi.org/10.2135/cropsci1982.0011183x002200050040x 

Christensen, R. H. B. (2019). Ordinal - Regression models for ordinal data. R package version 2019.12-10. 

Corrêa, F. M., Silva, J. W., Ferreira, D. F., & Bueno Filho, J. S. S. (2016). Bayesian algorithms for analysis of 

categorical ordinal data. Brazilian Journal of Biometrics, 34(4), 597-620. 

Cullis, B. R., Smith, A. B., & Coombes, N. E. (2006). On the design of early generation variety trials with 

correlated data. Journal of Agricultural Biological and Environmental Statistics, 11, 381-393. 

https://doi.org/10.1198/108571106X154443 

Dias, J. A., Rosado, L. R., Benites, F., Souza Sobrinho, F., Nunes, J. A. R., & Gonçalves, F. M. A. (2022). 

Efficiency of indirect selection for green biomass production of Urochloa ruziziensis. Crop Breeding and 

Applied Biotechnology, 22(2), 1-8. https://doi.org/10.1590/1984-70332022v22n2a22 

Falconer, D. S., & Mackay, T. F. C. (1996). Introduction to quantitative genetics (4th ed.). Longman. 

Fonseca, J. M. O., Nunes, J. A. R., Gonçalves, F. M. A., Souza Sobrinho, F., Benites, F. R. G., & Teixeira, D. H. 

L. (2020). Predictive approach to optimize the number of visual graders for indirect selection of high-

yielding Urochloa ruziziensis genotypes. Crop Breeding and Applied Biotechnology, 20(3), 1-7. 

https://doi.org/10.1590/1984-70332020v20n3a48 



Modeling of vigor ratings in ruzigrass breeding 11 of 12 

Acta Scientiarum. Agronomy, v. 47, e72493, 2025 

Gianola, D., & Fernando, R. L. (1986). Bayesian methods in animal breeding Theory. Journal of Animal 

Science, 63(1), 217-244. https://doi.org/10.2527/jas1986.631217x 

Gianola, D., & Foulley, J. (1983). Sire evaluation for ordered categorical data with a threshold model. 

Genetics Selection Evolution, 15(2), 201-224. https://doi.org/10.1186/1297-9686-15-2-201 

Gouveia, B. T., Mateus, R. G., Barrios, S. C. L., Valle, C. B., Bueno Filho, J. S. S., Rios, E. F., Dias, A. M., & 

Nunes, J. A. R. (2022). Combining ability and selection for agronomic and nutritional traits in Urochloa 

spp. hybrids. Grass and Forage Science, 77(1), 33-44. https://doi.org/10.1111/gfs.12555 

Gouy, M., Rousselle, Y., Bastianelli, D., Lecomte, P., Bonnal, L., Roques, D., Efile, J.-C., Rocher, S., Daugrois, J., 

Toubi , L., Nabeneza , S., Hervouet, C., Telismart, T., Denis, M., Thong-Chane, A., Glaszmann, J. C., Hoarau, 

J.-Y., Nibouche, S., & Costet, L. (2013). Experimental assessment of the accuracy of genomic selection in 

sugarcane. Theoretical and Applied Genetics, 126, 2575-2586. https://doi.org/10.1007/s00122-013-2156-z 

Hadfield, J. D. (2010). MCMC Methods for multi-response generalized linear mixed models: The 

MCMCglmm R Package. Journal of Statistical Software, 33(2), 1-22. https://doi.org/10.18637/jss.v033.i02 

Hamblin, J., & Zimmermann, M. J. O. (1986). Breeding common bean for yield in mixtures. In J. Janick (Ed.), 

Plant Breeding Reviews (v. 4, pp. 245-272). Wiley. 

Henderson, C. R. (1984). Applications of linear models in animal breeding. University of Guelph. 

Jaeger, T. F. (2008). Categorical data analysis: Away from ANOVAs (transformation or not) and towards logit 

mixed models. Journal of Memory and Language, 59(4), 434-446. https://doi.org/10.1016/j.jml.2007.11.007 

Jansen, J. (1991). Fitting regression models to ordinal data. Biometrical Journal, 33(7), 807-815. 

https://doi.org/10.1002/bimj.4710330707 

Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest package: tests in linear mixed 

effects models. Journal of Statistical Software, 82(13), 1-26. https://doi.org/10.18637/jss.v082.i13 

Marcelino, L. L., Moreira, G. R., Souza Sobrinho, F., Almeida, M. I. V., Cóser, A. C., Cunha, G. M., & Benites, 

F. R. G. (2020). Nutritive value of improved populations Brachiaria ruziziensis. Semina: Ciências Agrárias, 

41(1), 323-334. https://doi.org/10.5433/1679-0359.2020v41n1p323 

Marcon, F., Brugnoli, E. A., Nunes, J. A. R., Gutierrez, V. A., Martínez, E. J., & Acuña, C. A. (2021). 

Evaluating general combining ability for agromorphological traits in tetraploid bahiagrass. Euphytica, 

217, 1-11. https://doi.org/10.1007/s10681-021-02942-5 

McCulloch, C. E., & Searle, S. R. (2004). Generalized, linear, and mixed models. John Wiley & Sons. 

Nelder, J. A., & Wedderburn, R. W. M. (1972). Generalized linear models. Journal of the Royal Statistical 

Society, 135(3), 370-384. https://doi.org/10.2307/2344614 

Mood, A. M., Graybill, F. A., & Boes, D. C. (1974). Introduction to the theory of statistics (3rd ed.). McGraw Hill. 

Nouhoun, Z., Traoré, T. C., Sawadogo, E. T. B. P., Ayantunde, A., Prasad, K. V. S. V., Blummel, M., Balehegn, 

M., Rios, E., Dubeux, J. C., Boote, K. J., & Adesogan, A. T. (2022). Herbage accumulation and nutritive 

value of cultivar Mulato II, Congo grass, and Guinea grass cultivar C1 in a subhumid zone of West Africa. 

Agronomy Journal, 114(1), 138-147. https://doi.org/10.1002/agj2.20861 

Patterson, H. D., & Thompson, R. (1971). Recovery of inter-block information when block sizes are unequal. 

Biometrika, 58(3), 545-554. https://doi.org/10.1093/biomet/58.3.545 

Pereira, A. V., Souza Sobrinho, F., Valle, C. B., Lédo, F. J. S., Botrel, M. A., Oliveira, J. S., & Xavier, D. F. 

(2005) Selection of interspecific Brachiaria hybrids to intensify milk production on pastures. Crop 

Breeding Applied Biotechnology, 5(1), 99-104. https://doi.org/10.12702/1984-7033.v05n01a13 

Pinheiro, J. C., & Chao, E. C. (2006). Efficient laplacian and adaptive gaussian quadrature algorithms for 

multilevel generalized linear mixed models. Journal of Computational and Graphical Statistics, 15(1), 58-

81. https://doi.org/10.1198/106186006X96962 

Price, D. L., & Casler, M. D. (2014). Divergent selection for secondary traits in upland tetraploid switchgrass and 

effects on sward biomass yield. Bioenergy Research, 7, 329-337. https://doi.org/10.1007/s12155-013-9374-8 

R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical 

Computing. 

Riday, H. (2009). Correlations between visual biomass scores and forage yield in space planted red clover (Trifolium 

pratense L.) breeding nurseries. Euphytica, 170(3), 339-345. https://doi.org/10.1007/s10681-009-9991-7 



Page 12 of 12 Fonseca et al. 

Acta Scientiarum. Agronomy, v. 47, e72493, 2025 

Schmidt, P., Hartung, J., Bennewitz, J., & Piepho, H.-P. (2019). Heritability in plant breeding on a genotype-

difference basis. Genetics, 212(4), 991-1008. https://doi.org/10.1534/genetics.119.302134 

Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (Complete Samples). 

Biometrika, 52(3/4), 591-611. https://doi.org/10.2307/2333709 

Silva, D. M., Moraes, J. C., Auad, A. M., Fonseca, M. G., & Souza Sobrinho, F. (2013). Genetic variability of 

Brachiaria ruziziensis clones to Collaria oleosa (Hemiptera: Miridae) based on leaf injuries. American 

Journal of Plant Sciences, 4(12), 2418-2424. https://doi.org/10.4236/ajps.2013.412300 

Santos, H. G., Jacomine, P. K. T., Anjos, L. H. C., Oliveira, V. A., Oliveira, J. B., Coelho, M. R., ... Cunha, T. J. 

F. (2006). Sistema brasileiro de classificação de solos. Embrapa. 

Souza Sobrinho, F., Auad, A. M., & Lédo, F. J. S. (2010). Genetic variability in Brachiaria ruziziensis for 

resistance to spittlebugs. Crop Breeding and Applied Biotechnology, 10(1), 83-88. 

Stroup, W. W. (2015). Rethinking the analysis of non-normal data in plant and soil science. Agronomy 

Journal, 107(2), 811-827. https://doi.org/10.2134/agronj2013.0342 

Teixeira, D. H. L., Gonçalves, F. M. A., Nunes, J. A. R., Souza Sobrinho, F., Benites, F. R. G., & Dias, K. O. G. 

(2020). Visual selection of Urochloa ruziziensis genotypes for green biomass yield. Acta Scientiarum. 

Agronomy, 42(1), 1-8. https://doi.org/10.4025/actasciagron.v42i1.42444 

Timbó, A. L. O., Souza, P. N. C., Pereira, R. C., Nunes, J. D., Pinto, J. E. B. P., Souza Sobrinho, F., & Davide, L. 

C. (2014). Obtaining tetraploid plants of Urochloa ruziziensis (Brachiaria ruziziensis). Revista Brasileira 

Zootecnia, 43(3), 127-131. https://doi.org/10.1590/S1516-35982014000300004 

Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S. Springer. 

Whitman, B., Iannone, B. V., Kruse, J. K., Unruh, J. B., & Dale, A. G. (2022). Cultivar blends: A strategy for 

creating more resilient warm season turfgrass lawns. Urban Ecosystems, 25, 797-810. 

https://doi.org/10.1007/s11252-021-01195-3 

 

 


