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ABSTRACT. This study focused on incorporating dimensionality reduction based on marker significance 

to better harness the potential of machine learning for genomic prediction in different trait-genomic 

structures. The aim was to show that outcomes achieved with reduced data would improve predictive 

accuracy (𝑅2) and precision (root-mean-square error: RMSE) while reducing computational time.  Distinct 

subsets of markers, in simulated data, were chosen by prioritizing importance via the Bagging technique.  

Predictive modelling was subsequently conducted using both Bagging and the diverse architectures of a 

Multilayer Perceptron (MLP) neural network. This study was carried out with six traits of an F2 simulated 

population (derived from contrasting homozygotes) with 1,000 individuals. Three traits had three different 

heritabilities (0.4, 0.6, and 0.8) and were controlled by a set of 40 quantitative trait loci (QTLs). Additionally, 

four QTLs with more pronounced heritability effects (set at unity) were introduced in three other traits 

while preserving the same genetic control structure as the earlier traits. In our investigation, as the number 

of markers increased, both techniques gradually increased training time; however, the time needed for 

computation notably extended beyond the threshold of 100 markers for Bagging.  In comparison to the MLP 

model, the Bagging model generally obtained better accuracy (higher 𝑅2) and precision (lower RMSE) values 

regardless of heritability and added QTLs. Most importantly, results highlight that for traits subject to 

robust genetic control of additional QTLs, MLP networks experienced a decline in prediction performance 

from a few markers (~10). In contrast, Bagging kept constant or subtly improved predication performance.  

Finally, the dimensionality reduction procedure effectively improves genomic prediction, and Bagging 

captures complex genetic control structures for prediction better than MLP networks. 
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Introduction 

Genomic-wide selection (GWS), initially proposed by Meuwissen et al. (2001), has been an indispensable 

tool for breeders by associating molecular marker information with phenotypic traits. Through GWS, the 

estimation of individual genomic estimated breeding values (GEBVs) becomes possible without the need for 

phenotyping, thus amplifying genetic gains while reducing time and resources (Sant’Anna et al., 2020). This 

capacity to accelerate genetic progress through DNA insights is valuable as it enhances selective accuracy 

even without prior selection-associated mapping knowledge (Alkimim et al., 2020; Barbosa et al., 2021). 

However, GWS faces substantial challenges in high-dimensional situations, where the number of markers 

exceeds the number of genotypes and phenotypes (Akdemir et al., 2017; Azevedo et al., 2014; Crossa et al., 

2017). Notably, the abundance of markers across the genome juxtaposed with fewer individuals often leads to 

model overparameterization (Long et al., 2010). In this context, artificial neural networks (ANNs) and 

machine learning exhibit significant promise by capturing nonlinear marker relationships directly from the 

data (i.e., without a prior model definition); a feat often beyond the ability of conventional GWS models 

(Howard et al., 2014; Long et al., 2011a; Sant’Anna et al., 2020). 
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Different methods have been employed to address this dimensionality concern, including RR-BLUP (ridge-

regression best linear unbiased prediction) (Endelman, 2011), Bayesian methodologies (Meuwissen et al., 

2001), computational intelligence-based approaches utilizing radial basis function networks (Sant’Anna 

et al., 2020) and multilayer perceptron (MLP) neural networks (Barbosa et al., 2021). Machine learning 

methodologies, such as Boosting, Random Forests, Bagging, and their refined variants (Barbosa et al., 2021; 

Sousa et al., 2020), have also been utilized.  

Despite the undeniable promise held by ANNs and machine learning (ML) methodologies for genomic 

analysis, their effectiveness can be hindered by an abundance of markers, which triggers substantial 

computational burdens and makes the learning process complex. This challenge arises because a considerable 

proportion of the possible explanatory resources, namely, markers, contribute either minimally or not at all 

to genomic prediction (Ehret et al., 2015; Long et al., 2011b). Only markers showing linkage disequilibrium 

(LD) with quantitative trait loci (QTLs) are relevant in the prediction of GEBVs. In addition, these markers can 

explain the genetic variation underlying the traits of interest (Resende et al., 2012). 

Nevertheless, a prudent approach involving prior selection of a subset of markers potentially linked with 

the target traits can be adopted as a strategy to alleviate the complications arising from high dimensionality 

and enhance the predictive capabilities of the models (Long et al., 2010). 

Given these considerations, this study aimed to: i) select distinct subsets of markers by prioritizing their 

importance through the Bagging technique; ii) assess the effectiveness of dimensionality reduction in easing 

computational timing costs and increasing predictive accuracy through the reimplementation of the Bagging 

method and the exploration of diverse architectures of MLP neural networks; and iii) evaluate the impact of 

trait-specific genomic structures on the predictive capacity of the employed approaches. 

Material and methods 

Data simulation 

A simulated dataset was generated for an F2 population through a controlled cross between two distinct 

homozygous parental lines. This dataset included 1,000 individuals and was intended to help compare different 

approaches for predicting genetic values. The simulation was carried out using Genes software (Cruz, 2013). 

The genome of this simulated population consisted of ten linkage groups (LGs), which followed a diploid 

species (2n = 20). Each of these LGs spanned a length of 100 cM and encompassed approximately 200 SNP-

like codominant molecular markers. These markers were strategically positioned at equal intervals along the 

LGs, resulting in a total of 2,010 markers across the genome. 

Six distinct traits (X1, X2, X3, X4, X5, and X6) were introduced within this simulated population. These traits 

were designed to have broad-sense heritabilities (ℎ2) of 0.4, 0.6, and 0.8 for different pairs (X1-X2, X3-X4, X5-

X6, respectively). Furthermore, the genetic control of all six traits involved 40 QTLs with minor effects. 

Therefore, the phenotypic values of a given trait, under the influence of minor-effect QTLs, were obtained 

using the following model: 

𝑌𝑖 = 𝜇 + ∑ 𝑝𝑗𝛼𝑗

40

𝑗=1
+ ∑ 𝑝𝑗𝛼𝑗

40

𝑗=1
𝛼𝑗+1 + 𝜀𝑖 

where: 𝑌𝑖 is the phenotypic value of the 𝑖th observation; 𝜇 is the overall mean; 𝛼𝑗 is the effect of the favourable 

allele in the 𝑗th locus and assumes genotypic values of 𝑢 + 𝑎𝑗, 𝑢 + 𝑑𝑗, and 𝑢 − 𝑎𝑗, corresponding to the 

genotypic classes AA, Aa, and aa, which were encoded as 1, 0, and -1, respectively; in addition, 𝛼𝑗 represents 

the combined additive and dominant effects (i.e., 𝑎𝑗 = 𝑎𝑖 + 𝑑𝑖), where 𝑑𝑖/𝑎𝑖 averages 1;  𝛼𝑗𝛼𝑗+1 accounts for 

interactions between favourable alleles at different loci; 𝜀𝑖 follows a normal distribution 𝑁(0, 𝜎2), where 𝜎2 is 

obtained by (1 − ℎ2)𝜎𝑔
2/ℎ2, with 𝜎𝑔

2 representing the genotypic variance. 

Traits X2, X4, and X6 possessed an additional layer of complexity by inserting four major-effect QTLs, which 

remained invulnerable to environmental influences (i.e., ℎ2 = 1) which resulted in a more pronounced genetic 

impact on these traits. These additional QTLs simulated the effect of recessive genes without a cumulative 

effect. Therefore, the dominant pattern (A-B-C-D-) caused 𝑌𝑖 to increase to the maximum increment 

determined by polygenic action. In contrast, other patterns (i.e., when at least one recessive pair is present) 

increased to the minimum polygenic increment. These increment values were arbitrary and established 

consistently with the magnitude and scale of the analysed variable.  
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Notably, the simulated data structure exhibited specific characteristics due to the predefined simulation 

parameters and intended purposes. Therefore, (a) all traits were highly correlated since they predominantly 

shared the same QTLs; (b) each controlling QTL was accompanied by a corresponding marker, resulting in 40 

markers directly linked to the QTLs of traits X1, X3, and X5 and 44 markers linked to the QTLs of traits X2, X4, 

and X6; (c) 40 common markers were distributed across the initial eight LGs; (d) the four major-effect markers 

were confined to the first four LGs (Table 1); and (e) the final LGs lacked markers associated with the traits, 

which rendered 402 markers redundant and unnecessary for the prediction process. 

Table 1. Positioning of the five markers controlling all six simulated traits (X1, X2, X3, X4, X5, and X6) within their respective linkage 

groups (LGs). The markers exerting significant effects on traits X2, X4, and X6 are distinctly highlighted in bold. 

Linkage groups 1st 2nd Major-effect QTL 3rd 4th 5th 

LG1 11 56 80 101 146 191 

LG2 212 257 280 302 347 392 

LG3 413 458 480 503 548 593 

LG4 614 659 680 704 749 794 

LG5 815 860 - 905 950 995 

LG6 1016 1061 - 1106 1151 1196 

LG7 1217 1262 - 1307 1352 1397 

LG8 1418 1463 - 1508 1553 1598 

Computational approaches 

Bagging 

Bagging was chosen for marker selection and genomic prediction in this work. This technique is a powerful 

machine learning approach that enhances predictive performance by combining the outcomes of multiple 

decision trees, each constructed from resampled dataset observations (bootstrapping). This combination 

effectively reduces prediction variance, minimizes error rates, and mitigates overfitting issues (Breiman, 

1996, Breiman, 2001; Prasad et al., 2006). As a result, a set of B models, denoted as 𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝐵(𝑥), is 

generated. These models are aggregated to create an average model: 𝑓(𝑥) =
1

𝐵
∑ 𝑓𝑏(𝑥)𝐵

𝑏=1 . 

For the maker selection phase, the Bagging technique was applied across the entire dataset, encompassing 

1,000 observations and 2,010 markers for each trait. The Bagging procedure was performed using the 

randomForest() function from the randomForest package (Liaw & Wiener, 2014) available for the R 

environment (R Core Team, 2022). To configure the function for running Bagging rather than Random Forest, 

the parameter controlling the random sampling of predictors at each split (referred to as “mtry”) was set to 

the maximum number of available markers, i.e., 2010. This adjustment ensured that every available marker 

was considered a potential candidate during the split decision process. Moreover, the number of trees was set 

to 1,000 for the parameter referred to as “ntree”, while the assessment of predictor importance was enabled 

by specifying the “importance” parameter as TRUE. Other function parameters were left at their default 

settings. 

 After training, markers were sorted in descending order by importance score according to the percent 

increase in mean squared error (%IncMSE) for each phenotypic trait. Subsets consisting of 1, 2, 3, 4, 5, 10, 20, 

30, 40, 50, 100, 500, 1,000, and 2,010 markers were employed and analysed by another round of Bagging or 

were introduced as inputs to the MLP networks. These processes were conducted within the framework of a 

cross-validation method to ensure a more rigorous evaluation. 

Multilayer Perceptron (MLP) neural network 

In this study, the MLP neural network, initially proposed by Rosenblatt (1958), was used for genomic 

prediction. This neural network was executed using the mlp() function from the RSNNS package (Bergmeir & 

Benítez, 2012), which is available within the R environment. 

The neurons, denoted as 𝑊𝑚, are generated by linear combinations of 𝑀𝑗 (markers) input variables. The 

ultimate output variable 𝑌𝑘 is determined as a function of linear combinations of neurons 𝑊𝑚, depicted by the 

following equations: 

𝑊𝑚 = 𝜎(𝛼𝑜𝑚  +  𝛼𝑚
𝑇 𝑋), 𝑚 = 1, 2, . . . , 𝑀 

𝑇𝑘  = 𝛽𝑜𝑚  +  𝛽𝑘
𝑇𝑊, 𝑘 =  1, 2, . . . , 𝐾 
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𝑌𝑘 =  𝑔𝑘(𝑇), 𝑘 =  1, 2, . . . , 𝐾 

𝑊 =  (𝑊1, 𝑊2, ⋯ , 𝑊𝑚), 𝑇 = 𝑇1, 𝑇2, . . . , 𝑇𝑘 . 

The weights (𝛼𝑜𝑚 , 𝛼𝑚;  𝑚 =  1, 2, . . . , 𝑀) and (𝛽0𝑘, 𝛽𝑘;  𝑘 = 1,2, . . . , 𝐾) are unknown network parameters 

whose optimization aligned the ANN model with the training set. During this phase, the backpropagation of 

error, defined as “Std_Backpropagation” in the “learnFunc” parameter of the mlp() function, was employed 

to adjust the neuron weights iteratively. The adjustment measure was cross-entropy and computed as 𝑅(𝛩) =

− ∑ ∑ 𝑦𝑖𝑘𝑙𝑜𝑔𝑓𝑘(𝑥𝑖)
𝐾
𝑘=1

𝑁
𝑖=1 . The evaluation encompassed MLP networks with one or two hidden layers, each 

having a range spanning from one to twenty neurons (1, 2, 5, 10, 15, and 20). As a result, 42 unique neural 

architectures were assessed, ensuring a comprehensive analysis. These architectures were conveniently 

defined through a numeric vector assigned to the “size” parameter within the mlp() function. The upper limit 

for learning iterations was set to 10,000 for the “maxit" parameter. The logistic function was employed as the 

activation function for the hidden layers, the identity function was assigned to the output layer, and both had 

predefined settings within the mlp() function. Finally, the learning rate, set to 0.005, was specified in the 

“learnFuncParams” parameter of the mlp() function. 

Genomic prediction with cross-validation 

A k-fold cross-validation process was implemented to ensure a rigorous evaluation. The first population 

of 1,000 observations was initially randomized, then systematically partitioned into five distinct groups, each 

forming 200 observations. Four of these groups were sequentially merged to train the model (either Bagging 

or MLP techniques), while the remaining group was used to test the model. This procedure was iterated five 

times, with alternating combinations of the groups to ensure that each observation took part in the validation 

phase exactly once. 

Throughout the cross-validation routine for genomic prediction, the parameters employed in the 

randomForest() and mlp() functions remained consistent with those previously detailed. The subset of predictors 

(i.e., markers) varied within each training and validation phase according to its pre-selection setup through the 

Bagging technique. Moreover, the value chosen for the “mtry” parameter within the randomForest() function 

corresponded to the maximum number of markers used in every cross-validation round. 

Prediction efficiency and computer effort 

The prediction efficiency was evaluated through selective accuracy (𝑅2) and root-mean-square error 

(RMSE) metrics employed within the cross-validation routine. The accuracy metric measures how much the 

estimated values (𝑦̂) are related to the observed values (𝑦). In the context of quantitative genetics, 𝑅2 mirrors 

the trait's heritability (ℎ2) and is calculated as [𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑦, 𝑦̂)]2 (Cruz et al., 2012). Conversely, RMSE 

quantifies the disparity between estimated and observed values and is calculated as √∑(𝑦̂ − 𝑦)2/𝑛, where 𝑛 is 

the number of individuals. Additionally, the computer effort was assessed by recording the training time (in 

seconds) for each model (Bagging or MLP techniques) across the rounds. 

Outcomes were summarized into average 𝑅2, RMSE, and their respective standard errors (SE), which were 

all derived from the five validation rounds. To gain a general understanding of the prediction effectiveness 

and computational effort of the neural networks, these metrics were further averaged across neural structures 

(n = 42) after being averaged across folds. These results are depicted in different graphical plots constructed 

using the ggplot2 package within the R software (Wickham, 2016). The metrics were aggregated based on the 

distinct number of marker subsets and later presented in tabular format. Supplementary figures are available 

at https://github.com/barbosawf/Optmizing-genomic-prediction-with-marker-selection. 

Results 

Figure 1 displays the training times for the Bagging and MLP techniques applied to the six simulated traits. 

Notably, discrepancies were observed in training times across the two approaches. Specifically, in the Bagging 

approach, there was a substantial increase in computational time across all six traits when the marker count 

surpassed 100; at this threshold, the average computational time was 24.20 ± 0.08 seconds. Without marker 

selection, the average time increased significantly to 530.81 ± 0.81 seconds (Figure 1A). In contrast, the MLP 

network showed a smoother increase in time as the markers were progressively incorporated into the models 
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(Figure 1A and B). Within the MLP framework, the average time across the traits ranged from 17.21 to 48.42 

seconds, which covers the span of 1 to 2,010 markers (Figure 1B). 

 

Figure 1. Time (in seconds) taken in the training of Bagging (A) and MLP (B) models with six simulated traits (X1, X2, X3, X4, X5, and X6) 

using different marker subsets. For (A), the values were averaged across the five folds of the validation procedure, while for (B), the 

mean of the folds was further averaged across all 42 neural architectures evaluated. Vertical lines indicate standard error. 

Using a heatmap, further scrutiny of the computational effort of MLP networks revealed that training time 

distinctly increases as the number of markers increases, particularly in models featuring a higher density of 

neurons within the hidden layers (Figure 2). Conversely, the first hidden layer contributes more to the 

computational effort than the second layer (Figure 2). Furthermore, training durations for both Bagging and 

MLP network models showed no discernible association with trait heritability nor the presence of influential 

QTLs (Figure 2). 

 

Figure 2. Heatmap illustrating the time (in seconds) invested in training multilayer perceptron (MLP) neural network models for six 

simulated traits (X1, X2, X3, X4, X5, and X6), varying marker quantities, and diverse neural architectures. The color gradient indicates the 

averaged value obtained from the k-fold training process. 

In addition to training efforts, the 𝑅2 and RMSE estimates, analysed by MLP neural network and Bagging 

approaches, offer a comprehensive assessment of the overall predictive capabilities of the models across the 

spectrum of the six simulated traits. Upon examination of Table 2 and Figures 3 and 4, an explicit correlation 

appears between the 𝑅2 estimate, the RMSE estimate, the heritability of the simulated traits, and the presence 

of additional QTLs. Notably, higher heritability (ℎ2) values were directly associated with elevated 𝑅2 estimates 

and lower RMSE values (Table 2; Figure 3). The traits featuring an additional four QTLs presented high 𝑅2 
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estimates (Table 2, Figure 3), which coincided with elevated RMSE values (Table 2; Figure 4). When the 

performance of the techniques was examined, the Bagging approach consistently yielded the highest 𝑅2 

values and the lowest RMSE scores across all simulated traits (Table 2; Figures 3 and 4). Furthermore, 

following a rapid increase in 𝑅2 and a decrease in RMSE with four markers, the prediction capacity of the 

Bagging models slightly improved as the number of markers increased (Figures 3A and 4A). Conversely, the 

MLP models experienced a clear decline in their predictive capacity as the number of markers increased. In 

traits with four additional QTLs, this trend occurred after the MLP models reached their peak performance 

between 4 and 20 markers (Figures 3B and 4B). MLP model accuracy (𝑅2), however, was not impacted by 

increasing the number of markers for the traits without the additional QTLs (i.e., X1, X3, X5), whereas precision 

(RMSE) was impacted, especially for the trait with the lowest heritability (i.e., X1). 

Table 2. The overall mean of accuracy (𝑅2) and precision (root-mean-square error: RMSE) in the validation of either perceptron 

multilayer (MLP) neural networks or Bagging models trained with six different simulated traits (X1, X2, X3, X4, X5, and X6). 

ℎ2 Additional QTLs? Traits 
𝑅2   RMSE 

Bagging a MLP b   Bagging a MLP b 

0.2 
No X1 0.14 ± 0.01 0.09 ± 0.01  14.20 ± 0.14 16.43 ± 0.51 

Yes X2 0.47 ± 0.02 0.25 ± 0.02   16.04 ± 0.27 20.61 ± 0.65 

0.4 
No X3 0.22 ± 0.01 0.15 ± 0.01  11.07 ± 0.10 12.63 ± 0.27 

Yes X4 0.58 ± 0.02 0.33 ± 0.03   13.21 ± 0.34 17.67 ± 0.50 

0.6 
No X5 0.26 ± 0.02 0.17 ± 0.01   9.63 ± 0.13 10.94 ± 0.17 

Yes X6 0.62 ± 0.03 0.37 ± 0.03   11.89 ± 0.37 16.31 ± 0.53 
aValues were sequentially averaged by folds (5) and subsets of markers (14). b Values were sequentially averaged by folds (5), neural structures (42), and 

subsets of markers (14). 

 

Figure 3. The validation procedure’s accuracy (represented by 𝑅2) obtained with different marker subsets for six simulated traits (X1, 

X2, X3, X4, X5, and X6). In the Bagging approach (A), the 𝑅2 values are the averages derived from the five validation folds. In the MLP 

approach (B), the 𝑅2 values were initially averaged across the five validation folds and then further aggregated across all examined 

neural architectures (n = 42). The vertical lines in both panels denote the standard errors associated with the accuracy measurements. 

To assess the impact of various MLP network architectures on their predictive capabilities, heatmaps of 

the 𝑅2 and RMSE values are presented in Figure 4. In this figure, the colour scale shows the mean estimate of 

the k-fold validation procedure for neural structures considering only a single intermediate layer. For traits 

with only small-effect QTLs (X1, X3, and X5), the highest 𝑅2 estimates (Figure 4A) and lowest RMSE scores 

(Figure 4B) were obtained by neural structures with only a few neurons.  The most noteworthy 𝑅2 (0.17 ± 0.02, 

0.26 ± 0.03, and 0.33 ± 0.01) and RMSE (13.9 ± 0.31, 10.8 ± 0.24, and 9.13 ± 0.24) values were achieved using 

the most straightforward neural configurations with 1, 2, and 1 neuron(s) in the single hidden layer, 

respectively, for traits X1, X3, and X5. 

In contrast, traits X2, X4, and X6 increased 𝑅2 (Figure 4A) and decreased RMSE (Figure 4B) as the number 

of neurons increased.  The most remarkable 𝑅2 (0.52 ± 0.02, 0.62 ± 0.01, and 0.69 ± 0.02) and RMSE (15.5 ± 

0.37, 12.9 ± 0.17, and 11.2 ± 0.29) scores were accomplished with a greater number of neurons (i.e., 20) in the 

single hidden layer for traits X2, X4, and X6, respectively. Finally, introducing a second hidden layer into the 
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MLP neural networks did not seem to have a substantial impact on the 𝑅2  and RMSE  estimates, as they exhibited 

a colorimetric pattern similar to that observed when only a single hidden layer was utilized (Figure 4). 

 

Figure 4. Heatmaps illustrating the validation procedure’s accuracy (represented by 𝑅2 in A) and precision (represented by the root 

mean square error [RMSE] in B) obtained with different marker subsets for six simulated traits (X1, X2, X3, X4, X5, and X6). Both 

performance metrics were obtained using different multilayer perceptron (MLP) neural network architectures. The color gradient 

indicates the averaged values of the 𝑅2 (A) and RMSE (B) derived from the five validation folds. 

Discussion 

This study employed a decision tree-based machine learning approach, Bagging, to select unique subsets 

of markers based on prioritized importance to highlight the dual benefits of dimensionality reduction: 

enhancing predictive accuracy while reducing the computational effort. This improvement was analysed by 

the Bagging method (reiterated) and by exploring various MLP neural network architectures post-

dimensionality reduction. In addition, the impact of different genomic trait structures on the techniques used 

was evaluated. 

The foremost outcome to emphasize is the significant increase in computational time exhibited by Bagging 

after the number of markers surpassed 100. In contrast, MLP models consistently demonstrated steady growth 

in training time. A massive challenge for decision tree-based algorithms lies in scalability, which significantly 

extends the time required to process datasets with increased attributes and observations (Costa & Pedreira, 

2023). This phenomenon occurs when the number of potential splits and the overall complexity of the trees 

experiences a notable increase. 

ANNs facilitate model interactions through interconnections among neurons within their network layers 

(Rosenblatt, 1958). This process demands substantial computational resources, especially in high-

dimensional scenarios where numerous associations lack biological significance prediction (Ehret et al., 2015; 

Long et al., 2011b). This situation is notably evident in a genome inundated with markers. However, under 

the conditions of this study, with a maximum of 2,010 markers, the training of MLP neural networks required 
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significantly less computational effort in comparison to the Bagging approach. Furthermore, the observed 

trend of smooth temporal growth across increasing neuron markers, particularly in the first layer, suggests 

that MLP neural networks do not excessively suffer from the scalability phenomenon. 

In general, dimensionality reduction had a positive effect in the Bagging and MLP approaches. 

Nevertheless, the simulated heritability and additional QTLs strongly correlated with the 𝑅2 or RMSE 

estimates. Thus, in both approaches, increased markers made accuracy more distinct between characteristics 

according to their simulated heritabilities. Furthermore, an increase in markers negatively affected accuracy and 

precision for MLP neural networks, but not for Bagging. The remarkable resilience of Bagging in consistently 

producing accurate estimates as the number of traits increases, especially when additional QTL effects are present, 

can be attributed to its emphasis on prioritizing the most predictive traits during the construction of multiple 

decision trees (Breiman, 1996; Breiman, 2001; Montesinos López et al., 2022; Prasad et al., 2006). 

Conversely, MLP neural networks face a disadvantage due to the challenge of adapting neural weights 

under the burden of additional markers that lack biological associations with the traits (Ehret et al., 2015; 

Long et al., 2011b). The increase in the number of markers, arranged by importance (See Material and 

Methods), introduces noise that hinders optimal weight adjustments and adversely impacts predictions, 

particularly in traits with additional QTLs. Despite this disparity, the MLP models consistently upheld their 

accuracy when applied to traits unaffected by additional QTLs; albeit, at a level below that achieved by 

Bagging. This observation aligns with analogous studies on dimensionality reduction and reinforces the 

reliability of MLP models in scenarios where such genetic influences are absent (Sant’Anna et al., 2020; Silva 

et al., 2014; Silva et al., 2022). 

Notably, introducing a second hidden layer with neurons in the MLP networks did not yield a significant 

enhancement in prediction across any of the traits. This observation suggests that a single hidden layer can 

effectively capture the nonlinearity inherent in quantitative traits, especially those with distinct genomic 

structures (as simulated in this study). However, our findings underscore that the pivotal factor influencing 

prediction accuracy in MLP networks is more closely related to the number of neurons within a single layer 

rather than the addition of extra layers. 

Conclusion 

Our results affirm the efficacy of Bagging as a proficient method for dimensionality reduction and 

underscore the effectiveness of employing decision-tree-based methods for such purposes, a correlation 

consistently highlighted in other studies (Arouisse et al., 2021; Walters et al., 2012). Moreover, ranking 

significant markers by importance during the prediction process can increase the accuracy and precision of 

the methods while concurrently lowering computational costs. 

Data availability 

We inform you that the data used in the research were made publicly available and can be accessed via the 

link https://github.com/barbosawf/Optmizing-genomic-prediction-with-marker-selection. 
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