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ABSTRACT. Nitrogen (N) is among the main nutrients widely used in agriculture worldwide; however, its 

administration and management can be challenging. Excess nitrogen is harmful to plant health and the 

environment, requiring effective monitoring of leaf nitrogen concentration (LNC) in field crops. Remote sensing 

stands out as a valuable tool in this context. This study contributed to the monitoring of LNC by implementing a 

machine learning algorithm based on the processing of reflectance data from Sentinel-2 (S2) satellites obtained 

via spectral resampling. For this purpose, five independent datasets containing leaf reflectance measurements 

collected by spectroradiometers were resampled to the spectral resolution of the sensors onboard the S2 

satellites. LNC prediction models were developed from the resampled datasets, using Support Vector Regression 

(SVR) and Random Forest Regression (RFR), with 75% of the data from each set used to train a model and the 

remaining 25% for validation. The models demonstrated good predictive power, with the Root Mean Squared 

Error (RMSE) ranging from 0.39 to 0.94%. Furthermore, this study investigated the transferability of the models' 

predictive power by using 100% of the data from each set for training and validating predictions on the other sets. 

To improve transferability, the Transfer Component Analysis (TCA) technique was applied to adapt domains 

between the sets. This analysis revealed favorable results, especially with the TCA-SVR and TCA-RFR 

combinations, highlighting a greater capacity to extract transferable spectral features between different leaf 

reflectance datasets. It was concluded that spectral resampling does not hinder the development of effective LNC 

prediction models. Aligning this resampling with the resolution of Sentinel-2 sensors, resulted in more efficient 

monitoring of LNC, eliminating the need to individually reference each sampling point. This approach simplified 

the monitoring process, reduced both time and costs, and was directly beneficial to producers. 

Keywords: remote sensing; reflectance data; transferability of predictive power; support vector regression; random 
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Introduction 

Nitrogen (N) is a key nutrient in global agriculture, essential for plant growth and productivity. However, 

it is easily lost in production systems because of its high reactivity, thereby complicating its management. To 

prevent nutrient deficiencies, farmers often excessively apply nitrogen, which can cause adverse effects. 

According to Cilia et al. (2014), the unabsorbed fraction of nitrogen can cause nutritional imbalances in plants 

and environmental issues such as leaching and greenhouse gas emissions. 

Consequently, farmers have traditionally relied on methods of chemical laboratory analysis of the tissue, 

known as foliar diagnosis, to determine the foliar content of the nutrient and estimate the correct nitrogen 

fertilizer dosage, ensuring that the plant's nutritional demands are met for optimal production. Ideally, these 

analyses should be conducted periodically throughout the year, which imposes time and costs on producers 

(Muñoz-Huerta et al., 2013). 

Indeed, an efficient method for large-scale monitoring of N in the field is only possible through remote 

sensing (Berger et al., 2020a). Previous studies have demonstrated the ability of spectral reflectance to capture 

biochemical and biophysical plant characteristics, including leaf nitrogen concentration (LNC), via remote 

sensing (Berger et al., 2020b; Féret et al., 2021; Jetz et al., 2016). 

However, there are few studies investigating the potential of using satellite images to directly estimate 

plant N. A limitation of such studies is the need for large and expensive field trials to train and calibrate 

https://www.unoeste.br/fipp?gad_source=1&gad_campaignid=20898868493&gbraid=0AAAAADoB8Tc-dso6-4F8EEmjsIR9p_Bvc&gclid=EAIaIQobChMIpK6itq-4jwMV8JbuAR3R4zWHEAAYASAAEgKeKfD_BwE
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models. Therefore, several studies have applied measurements from spectroradiometers to simulate 

measurements, through spectral resampling from satellite sensors (Prey & Schmidhalter, 2019; Schlemmer 

et al., 2013; Clevers & Kooistra, 2011). In these studies, spectrometer and spectroradiometer measurements 

effectively acted as tools for simulating and validating the data acquired by satellite sensors. 

However, Wan et al. (2022) emphasized that, to date, no standard spectral index has been established for 

estimating LNC from remote sensing reflectance data. The authors proposed integrating transfer component 

analysis (TCA) with support vector regression (SVR) to transfer LNC estimation models across different plant 

species, utilizing data obtained from spectroradiometers. 

The objective of this study was to evaluate the potential of using reflectance data from Sentinel-2 

satellites, obtained through spectral resampling of spectroradiometer measurements, for the development of 

LNC regression models that can be transferred across sets of plants from different crops, locations, 

developmental stages, and growing conditions. 

Material and methods 

In this study, five (5) independent datasets obtained from spectroradiometer measurements were utilized, 

covering reflectance values from 350 to 2500 nm at 1 nm intervals. These datasets were selected for their 

scope and diversity, including 1,394 leaves from 60 plant species at various growth stages and under different 

developmental conditions (Table 1). These data enabled a robust analysis of the spectral variations associated 

with LNC (Table 2), providing a broad and representative basis for the study's objectives. The datasets are 

available online at the EcoSiS spectral library (https://ecosis.org/). 

Table 1. Information about the datasets used in this work. 

Datasets Dataset #1 Dataset #2 Dataset #3 Dataset #4 Dataset #5 

Plant species Northern temperate and 

boreal trees (Gymnosperms, 

Monocotyledons and 

Dicotyledons) 

Broadleaf and 

needleleaf trees 

(Gymnosperms and 

Dicotyledons) 

Arctic plant species 

(Monocotyledons and 

Dicotyledons) 

Crops 

(Dicotyledons) 

Crops 

(Dicotyledons) 

Location Northeastern USA California, USA Alaska, USA New York, USA Hangzhou, China 

Spectroradiometer FieldSpec3 with leaf clip FieldSpec3 with bare 

fiber 

fiber FieldSpec3 with 

leaf clip 

SVC HR1024i with 

leaf clip 

FieldSpec4 with 

leaf clip 

Sampling time During the 2008–2011 

growing seasons 

Spring, summer, and 

fall seasons of 2013 

July 2013 8 weeks after seed 

planting, 2015 

Dec 20, 2017 to Apr 

15, 2018 

Number of species 27 16 8 8 1 

Number of samples 1,161 284 69 183 320 

Table 2. LNC statistical information in the datasets. 

Dataset Minimum (%) Maximum (%) Average (%) Standard Deviation (%) 

Dataset #1 0.70 4.40 2.23 0.86 

Dataset #2 0.45 3.81 1.44 0.63 

Dataset #3 0.90 3.90 2.57 0.70 

Dataset #4 0.71 6.08 3.33 1.32 

Dataset #5 4.10 8.24 5.84 0.92 

 

For the analyses conducted in this study, wavelengths ranging from 1,350-1,440 nm, 1,790–1,990 nm, and 

2,400–2,500 nm were excluded from the data, as they coincide with atmospheric water absorption regions. At 

those wavelengths, water absorption is intense, significantly reducing the amount of reflected light and 

making the reflectance information less reliable, which could introduce noise and impact model accuracy. 

The 350-400 nm range was excluded because of its low signal-to-noise ratio, resulting from lower sensor 

sensitivity, greater atmospheric scattering, and the naturally low reflectance of plants in this region.  

Thereafter, the data was resampled to the spectral resolution of the Sentinel-2 (S2) satellite bands 

(Table 3), according to the spectral response function provided by the European Space Agency (2019), which 

describes the sensitivity of S2 devices to the energy of different wavelengths. 

The formula used to calculate the central wavelength of a spectral band is given by (1): 

𝜆𝑐 =
∫ 𝜆×𝑆(𝜆).𝑑𝜆

∫ 𝑆(𝜆).𝑑𝜆
           (1) 

https://ecosis.org/
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where λ and S denote the bandwidth (in nanometers) and the spectral response function of a given 

multispectral instrument, respectively. 

The data resampling process was conducted using the "hsdar" package available in the R language. This is 

a powerful tool for analyzing high-resolution spectral data (HSI - Hyperspectral Imaging), which provides the 

spectral Resampling function for the spectral resampling of data. This function is used to adjust the spectral 

data to a new wavelength range and a new desired spectral resolution (Lehnert et al., 2022). 

Table 3. Specifications of the sensors on board the Sentinel-2 satellites. 

Band Band name Central wavelength [nm] Bandwidth [nm] Resolution [m] 

B01 Coastal aerosol 443 21 60 

B02 Blue 490 66 10 

B03 Green 560 36 10 

B04 Red 665 31 10 

B05 RE1 705 15.5 20 

B06 RE2 740 15 20 

B07 RE3 783 20 20 

B08 NIR1 842 106 10 

B8a NIR2 865 21.5 20 

B09 Water vapour 945 20.5 60 

B10 SWIR—cirrus 1375 30.5 60 

B11 SWIR1 1610 92.5 20 

B12 SWIR2 2190 180 20 

 

To use the spectral resampling function, the original spectral data and the new wavelength desired for 

resampling were supplied as parameters (Table 3), as well as the desired interpolation method, which by 

default was linear interpolation. 

After the resampling of leaf reflectance data into S2 bands, the algorithms were implemented to find a 

vector of values capable of regressing the LNC. 

Among the algorithms evaluated, Support Vector Regression (SVR) is a supervised Machine Learning (ML) 

technique for dealing with regression problems (Drucker et al., 1996), which seeks a balance between the 

complexity of the model and the prediction error.  

Briefly, SVR aims to determine an optimal hyperplane f(x) so that the distance between it and the training 

samples is as minimal as possible, i.e. where the allowed residuals do not exceed a predetermined value ε.  

Let 𝑆 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛)}  ⊆  {𝑋 × 𝑌}𝑛 be the training set, where n is the number of samples. For 

each sample (𝑥𝑖 , 𝑦𝑖) where 𝑖 = {1, 2, … , 𝑛}, 𝑥𝑖 = {𝑥𝑖1
, 𝑥𝑖2

, … , 𝑥𝑖𝑚
} is the set of reflectance values in m different 

bands, and 𝑦𝑖  is the corresponding LNC. 

The mathematical model for the SVR is characterized as a non-linear programming problem, given by 

formula (2) (Wang et al., 2005): 

−
1

2
∑𝑛

𝑖=1 ∑𝑛
𝑗=1 (𝛼𝑖 − 𝛼𝑖

∗)(𝛼𝑗 − 𝛼𝑗
∗)〈𝑥𝑖 ∙ 𝑥𝑗〉 − 𝜀 ∑𝑛

𝑖=1 (𝛼𝑖 + 𝛼𝑖
∗) + ∑𝑛

𝑖=1 𝑦𝑖(𝛼𝑖 + 𝛼𝑖
∗)  (2) 

such that 

∑

𝑛

𝑖=1

(𝛼𝑖 − 𝛼𝑖
∗) = 0 

𝛼𝑖 , 𝛼𝑖
∗ 𝜖 [0, 𝐶], ∀𝑖 = 1, … , 𝑛 

where 𝛼𝑖 , 𝛼𝑖
∗ are Lagrange multipliers, and C is a regularizing constant. 

In addition to SVR, the Random Forest Regression (RFR) algorithm was also used, which is another 

powerful approach to regression problems. According to Izbicki and Santos (2020), RFR is a non-parametric 

ML algorithm that consists of creating B distinct trees, without correlation between them, and combining 

their results to improve predictive power in comparison to an individual tree. To create B distinct trees, B 

random samples of the original sample were used and covariates were chosen for each node created from a 

randomly selected subset of the original covariates. 

Thus, let 𝑔𝑏(𝑥) be the prediction function obtained by the b-th tree. The prediction function generated by 

the random forest is given by: 
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𝑔(𝑥) =  
1

𝐵 
∑𝐵

𝑏=1 𝑔𝑏(𝑥)           (3) 

In predicting LNC concentrations, the initial evaluation aimed to assess the performance of SVR and RFR 

models. Five SVR models and five RFR models were developed, each using a distinct dataset (Table 1). Each 

model utilized 75% of its dataset for training, and the predictive capability of each model was evaluated using 

reflectance samples from the remaining 25% of the data to predict LNC concentrations. 

Next, to assess the transferability of SVR and RFR models in predicting LNC, new models were developed 

following the architecture depicted in Figure 1. 

In Figure 1's architecture, each dataset employed 100% of its samples to train both an SVR and an RFR 

model. Thereafter, the predictive performance of each model was evaluated by estimating LNC values in the 

other datasets (those not used in the model development process). 

 
Figure 1. Architecture of the SVR and RFR models for evaluating the potential transferability of the predictive power of LNC between 

different sets of plant species. 

In other words, let 𝐷 = {𝑑1, 𝑑2, … , 𝑑𝑖} be the set of datasets used in this work, and 𝑀 = {𝑚1, 𝑚2, … , 𝑚𝑖} the set of 

LNC prediction models developed, where 𝑖 = {1,2,3,4,5}. Each model 𝑚𝑖 was trained with data from 𝑑𝑖. The evaluation 

of 𝑚𝑖 was based on its ability to predict LNC using reflectance samples for each element in the subset 𝐷 − {𝑑𝑖}. 

This approach enabled investigation of the potential transferability of the predictive power of these 

models across different groups of plants, assessing their ability for generalization and knowledge adaptation. 

In this context, the Transfer Component Analysis (TCA) algorithm was also implemented to enable the 

transfer of predictive capacity between the sets of reflectance values, which although different, are related to 

the determination of LNC. 

TCA is a transfer learning algorithm proposed by Pan et al. (2008), which seeks via dimensionality 

reduction, to find a shared representation between different but related datasets. In this space, the distance 

between the data distributions of the source set and the target set was minimal, making it possible to apply 

common regression or classification algorithms, such as SVR and RFR. The distance between the distributions 

of the sets can be obtained by the maximum mean discrepancy (MMD) in a KerneL Hilbert space (RKHS). 

Based on this, let 𝑋𝑠 = [𝑥𝑠1, 𝑥𝑠2, … , 𝑥𝑠𝑛]  and 𝑋𝑡 = [𝑥𝑡1, 𝑥𝑡2, … , 𝑥𝑡𝑛] be the sets of reflectance values of the source 

domain and the target domain respectively, the TCA seeks to find the projection matrix w from the following 

eigenvalue decomposition problem (4): 

𝐾𝐻𝐾𝑤 =  𝜆(𝐾𝐿𝐾 + 𝜇𝐼)𝑤           (4) 

where 

𝐾 = (𝐾𝑠,𝑠 𝐾𝑠,𝑡 𝐾𝑡,𝑠 𝐾𝑡,𝑡 ),  𝐾𝑠,𝑠, 𝐾𝑠,𝑡, 𝐾𝑡,𝑠, 𝐾𝑡,𝑡 are the kernel matrices, 𝐻 = 𝐼 − 11𝑇/(𝑛𝑠 + 𝑛𝑡) 

and 

𝐿𝑖,𝑗 = {
1

𝑛𝑠
2

      𝑖𝑓 𝑥𝑖 , 𝑥𝑗 ∈ 𝑋𝑠  
1

𝑛𝑡
2       𝑖𝑓 𝑥𝑖 , 𝑥𝑗 ∈ 𝑋𝑡  

−1

𝑛𝑠𝑛𝑡  
𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒𝑠   

Thus, in the final analysis, transferability was evaluated for models generated by combining the TCA 

algorithm with SVR and TCA algorithm with RFR, as depicted in Figure 2. 
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In the architecture of Figure 2, each pair of datasets underwent TCA. This process resulted in the creation 

of newly adapted datasets with similar distributions, thereby facilitating the application of conventional 

machine learning algorithms. Subsequently, prediction models, RFR and SVR, were trained using one of the 

adapted datasets as the training set, referred to as the source dataset. Thereafter, the predictive capability of 

these models was evaluated using the other adapted dataset as the test set, referred to as the target dataset. 

This systematic procedure enabled us to observe the extent to which the adaptation provided by TCA 

influences the predictive capacity of the models. 

 
Figure 2. Architecture of the SVR and RFR models for evaluating the potential transferability of the predictive power of LNC between 

different sets of plant species, after domain adaptation by TCA. 

The prediction models were evaluated using the Root Mean Square Error (RMSE) metric, which revealed the 

standard deviation of the residuals, i.e. a measure of the average deviation between the observed and the predicted. 

The square root (5) was applied so that the unit would remain on the same scale as the original data. 

𝑅𝑀𝑆𝐸(𝑦, 𝑦̂) =  √
1

𝑛
∑𝑛

𝑖=1 (𝑦𝑖 − 𝑦𝑖̂)
2         (5) 

where y and 𝑦̂ represent the actual and predicted LNC values, respectively, and n is the number of samples. 

For the Python language, the ML library scikit-learn was used to implement the models, and the 

hyperparameters of the models were determined using the Grid Search Cross Validation algorithm, 

considering recurring values in the literature and 3 different kernel functions for the SVR (polynomial, radial 

basis function and sigmoid). When running the TCA, the 'primal' kernel was used with a projection to 5 

dimensions, to operate non-complex numerical values. 

Results and discussion 

For the five SVR and RFR models developed from 75% of the data in each set, the results obtained are 

shown in Figure 3. 

For the SVR models (in green in Figure 3), RMSE values of 0.40, 0.43, 0.48, 0.95, and 0.86% were obtained 

for datasets #1, #2, #3, #4, and #5, respectively. The RFR models (in red in Figure 3) obtained results very close 

to the SVR, with Root Mean Square Error (RMSE) values: 0.45, 0.54, 0.47, 0.94, and 0.76% for datasets #1, #2, 

#3, #4, and #5, respectively. 

The results of the transferability analysis of the SVR and RFR models, whose proposed architecture is 

shown in Figure 1, are shown in Figures 4, 5, 6, 7, and 8. 

None of the models generated were transferable to dataset 4, estimating a constant LNC value independent 

of the reflectance values. 



Page 6 of 13 Simão et al. 

Acta Scientiarum. Agronomy, v. 48, e73206, 2026 

 
Figure 3. Comparative results of the SVR (in green) and RFR (in red) models in predicting leaf nitrogen concentration (LNC). For 

example, "Dataset #1" indicates that the SVR model is slightly more capable than the RFR model in predicting LNC for dataset #1, as it 

has a lower root mean square error. 

 
Figure 4. Comparative result of the transferability analysis of the SVR (in green) and RFR (in red) models developed from dataset #1. 

For example, "Dataset #1-#2" indicates that the RFR model trained on data from dataset #1 is slightly more capable than the SVR model 

at predicting LNC from dataset #2, as it obtained a lower RMSE. 
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Figure 5. Comparative result of the transferability analysis of the SVR and RFR models developed from dataset #2. 

 
Figure 6. Comparative result of the transferability analysis of the SVR and RFR models developed from dataset #3. 

For the SVR models, the valid RMSE values ranged from 0.70 to 4.45%, with an average RMSE value of 

approximately 2.32%. The highest RMSE values, above 4%, were obtained when transferring the model 

developed with set #1 to set #5 (RMSE = 4.22%), the model developed with set #5 to set #2 (RMSE = 4.36%), 

and the model developed with set #2 to set #5 (RMSE = 4.45%). 
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Figure 7. Comparative result of the transferability analysis of the SVR and RFR models developed from dataset #4. 

 
Figure 8. Comparative result of the transferability analysis of the SVR and RFR models developed from dataset #5. 

For the RFR models, the valid RMSE values ranged from 0.61 to 4.47%, with an average RMSE value of 

2.46%. The highest RMSE values, above 4%, were obtained in the same situations as the SVR models, i.e. in 

the transferable models from set #1 to set #5 (RMSE = 4.47%), from set #5 to set #2 (RMSE = 4.34%), and finally 

from set #2 to set #5 (RMSE = 4.36%).  
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The results of the transferability analysis of the models generated from the combination of Transfer 

Component Analysis (TCA) with SVR and TCA with RFR algorithms, as proposed in the architecture presented 

in Figure 2, are shown in Figures 9, 10, 11, 12, and 13. 

 
Figure 9. Comparative result of the transferability analysis of the SVR and RFR models developed from dataset #1 after domain 

adaptation provided by TCA. 

 
Figure 10. Comparative result of the transferability analysis of the SVR and RFR models developed from dataset #2 after domain 

adaptation provided by TCA. 
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Figure 11. Comparative result of the transferability analysis of the SVR and RFR models developed from dataset #3 after domain 

adaptation provided by TCA. 

 
Figure 12. Comparative result of the transferability analysis of the SVR and RFR models developed from dataset #4 after domain 

adaptation provided by TCA. 

After implementing the TCA, the models were transferable to all dataset combinations. For the SVR models, 

the valid RMSE values obtained ranged from 0.73 to 4.29%, with an average RMSE value of approximately 1.98%. 

For the RFR models, the RMSE values ranged from 0.61 to 4.31%, with an average RMSE value of 2.24%. 
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Figure 13. Comparative result of the transferability analysis of the SVR and RFR models developed from dataset #5 after domain 

adaptation provided by TCA. 

Figure 14 shows a comparison of the density graphs from datasets #1 and #4 before the TCA projection, 

and Figure 15 shows the new density distribution from the same sets after the TCA.  The comparison proposed 

in the graphs provides an overview of the impact of the TCA on the adaptation of the domains of the sets. 

 

Figure 14. Comparative density distribution of datasets #1 and #4 in the Sentinel-2 bands. 
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Figure 15. Density distribution of datasets #1 and #4 mapped into a shared representation space found by TCA. 

The results obtained with the first models developed, five SVR and RFR models (Figure 3), confirmed that 

both SVR and RFR are good LNC estimators. This result can be easily understood since the data used for model 

development and validation are similar and within the same dataset. The models that did not perform 

satisfactorily, with the highest RMSE for both the SVR and the RFR, were those developed from dataset #4, 

followed by those developed from dataset #5. These datasets had the highest standard deviation related to 

the LNC, as presented in Table 2. 

On the contrary, the results presented in Figures 4, 5, 6, 7, and 8 show that the transferability of the SVR 

and RFR models depends in part on the distribution of LNC and the spectral characteristics associated with 

different sets of plants. Dataset 5, composed of data from only one plant species, was involved in the 

development and validation of poor estimators, leading to overestimates and underestimates in LNC 

predictions. Furthermore, none of the models generated were transferable to dataset 4. This result can be 

attributed to the high dispersion of the data in this set, as seen in Table 2. 

However, after the domain adaptation provided by TCA, transferable models were developed for all 

combinations of datasets. The results obtained with the SVR and RFR models after the TCA, and the density graphs 

of the sets shown in Figures 14 and 15, showed that the TCA effectively improved the performance of the SVR and 

RFR models, being able to find a shared representation between different sets of reflectance values. 

In future research, it would be beneficial to investigate the reasons behind the varying performance of the 

SVR and RFR models across different datasets. Utilizing explainable artificial intelligence (XAI) techniques 

could provide deeper insights into the factors influencing model performance, thereby enhancing our 

understanding of model behavior and improving the applicability of these models in practical settings. 

Conclusion 

The spectral resampling process enabled the creation of effective LNC prediction models. This is because 

the combination of TCA with SVR and TCA with RFR, efficiently extracted the spectral characteristics 

common to the resampled leaf reflectance sets and reliably estimated the plant's LNC. It is possible to 

generate transferable models capable of assisting in the monitoring of plant LNC, with less investment in 

sampling and chemical analysis, and consequently, optimizing the decision-making process for nitrogen 

fertilization management in agriculture. 

Data availability 

The data resulting from this study are not available in public repositories, as they comprise a large volume of 

information, including the datasets resampled to the satellite bands, the data processed after the application of 

the TCA algorithm, and the prediction outputs of each model. The analyses presented from Figure 3 onward clearly 

and sufficiently describe the obtained results. Therefore, this item is considered not applicable. 
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