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Inference of leaf nitrogen concentration using machine learning
on data resampled to the spectral resolution of Sentinel-2
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ABSTRACT. Nitrogen (N) is among the main nutrients widely used in agriculture worldwide; however, its
administration and management can be challenging. Excess nitrogen is harmful to plant health and the
environment, requiring effective monitoring of leaf nitrogen concentration (LNC) in field crops. Remote sensing
stands out as a valuable tool in this context. This study contributed to the monitoring of LNC by implementing a
machine learning algorithm based on the processing of reflectance data from Sentinel-2 (S2) satellites obtained
via spectral resampling. For this purpose, five independent datasets containing leaf reflectance measurements
collected by spectroradiometers were resampled to the spectral resolution of the sensors onboard the S2
satellites. LNC prediction models were developed from the resampled datasets, using Support Vector Regression
(SVR) and Random Forest Regression (RFR), with 75% of the data from each set used to train a model and the
remaining 25% for validation. The models demonstrated good predictive power, with the Root Mean Squared
Error (RMSE) ranging from 0.39 to 0.94%. Furthermore, this study investigated the transferability of the models’
predictive power by using 100% of the data from each set for training and validating predictions on the other sets.
To improve transferability, the Transfer Component Analysis (TCA) technique was applied to adapt domains
between the sets. This analysis revealed favorable results, especially with the TCA-SVR and TCA-RFR
combinations, highlighting a greater capacity to extract transferable spectral features between different leaf
reflectance datasets. It was concluded that spectral resampling does not hinder the development of effective LNC
prediction models. Aligning this resampling with the resolution of Sentinel-2 sensors, resulted in more efficient
monitoring of LNC, eliminating the need to individually reference each sampling point. This approach simplified
the monitoring process, reduced both time and costs, and was directly beneficial to producers.

Keywords: remote sensing; reflectance data; transferability of predictive power; support vector regression; random
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Introduction

Nitrogen (N) is a key nutrient in global agriculture, essential for plant growth and productivity. However,
it is easily lost in production systems because of its high reactivity, thereby complicating its management. To
prevent nutrient deficiencies, farmers often excessively apply nitrogen, which can cause adverse effects.
According to Cilia et al. (2014), the unabsorbed fraction of nitrogen can cause nutritional imbalances in plants
and environmental issues such as leaching and greenhouse gas emissions.

Consequently, farmers have traditionally relied on methods of chemical laboratory analysis of the tissue,
known as foliar diagnosis, to determine the foliar content of the nutrient and estimate the correct nitrogen
fertilizer dosage, ensuring that the plant's nutritional demands are met for optimal production. Ideally, these
analyses should be conducted periodically throughout the year, which imposes time and costs on producers
(Munoz-Huerta et al., 2013).

Indeed, an efficient method for large-scale monitoring of N in the field is only possible through remote
sensing (Berger et al., 2020a). Previous studies have demonstrated the ability of spectral reflectance to capture
biochemical and biophysical plant characteristics, including leaf nitrogen concentration (LNC), via remote
sensing (Berger et al., 2020b; Féret et al., 2021; Jetz et al., 2016).

However, there are few studies investigating the potential of using satellite images to directly estimate
plant N. A limitation of such studies is the need for large and expensive field trials to train and calibrate
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models. Therefore, several studies have applied measurements from spectroradiometers to simulate
measurements, through spectral resampling from satellite sensors (Prey & Schmidhalter, 2019; Schlemmer
et al., 2013; Clevers & Kooistra, 2011). In these studies, spectrometer and spectroradiometer measurements
effectively acted as tools for simulating and validating the data acquired by satellite sensors.

However, Wan et al. (2022) emphasized that, to date, no standard spectral index has been established for
estimating LNC from remote sensing reflectance data. The authors proposed integrating transfer component
analysis (TCA) with support vector regression (SVR) to transfer LNC estimation models across different plant
species, utilizing data obtained from spectroradiometers.

The objective of this study was to evaluate the potential of using reflectance data from Sentinel-2
satellites, obtained through spectral resampling of spectroradiometer measurements, for the development of
LNC regression models that can be transferred across sets of plants from different crops, locations,
developmental stages, and growing conditions.

Material and methods

In this study, five (5) independent datasets obtained from spectroradiometer measurements were utilized,
covering reflectance values from 350 to 2500 nm at 1 nm intervals. These datasets were selected for their
scope and diversity, including 1,394 leaves from 60 plant species at various growth stages and under different
developmental conditions (Table 1). These data enabled a robust analysis of the spectral variations associated
with LNC (Table 2), providing a broad and representative basis for the study's objectives. The datasets are
available online at the EcoSiS spectral library (https://ecosis.org/).

Table 1. Information about the datasets used in this work.

Datasets Dataset #1 Dataset #2 Dataset #3 Dataset #4 Dataset #5
Plant species Northern temperate and Broadleaf and Arctic plant species Crops Crops
boreal trees (Gymnosperms,  needleleaf trees (Monocotyledons and  (Dicotyledons) (Dicotyledons)
Monocotyledons and (Gymnosperms and Dicotyledons)
Dicotyledons) Dicotyledons)
Location Northeastern USA California, USA Alaska, USA New York, USA  Hangzhou, China
Spectroradiometer  FieldSpec3 with leaf clip  FieldSpec3 with bare fiber FieldSpec3 with SVC HR1024i with  FieldSpec4 with
fiber leaf clip leaf clip leaf clip
Sampling time During the 2008-2011 Spring, summer, and July 2013 8 weeks after seed Dec 20, 2017 to Apr
growing seasons fall seasons of 2013 planting, 2015 15, 2018
Number of species 27 16 8 8 1
Number of samples 1,161 284 69 183 320

Table 2. LNC statistical information in the datasets.

Dataset Minimum (%) Maximum (%) Average (%) Standard Deviation (%)
Dataset #1 0.70 4.40 2.23 0.86
Dataset #2 0.45 3.81 1.44 0.63
Dataset #3 0.90 3.90 2.57 0.70
Dataset #4 0.71 6.08 3.33 1.32
Dataset #5 4.10 8.24 5.84 0.92

For the analyses conducted in this study, wavelengths ranging from 1,350-1,440 nm, 1,790-1,990 nm, and
2,400-2,500 nm were excluded from the data, as they coincide with atmospheric water absorption regions. At
those wavelengths, water absorption is intense, significantly reducing the amount of reflected light and
making the reflectance information less reliable, which could introduce noise and impact model accuracy.
The 350-400 nm range was excluded because of its low signal-to-noise ratio, resulting from lower sensor
sensitivity, greater atmospheric scattering, and the naturally low reflectance of plants in this region.

Thereafter, the data was resampled to the spectral resolution of the Sentinel-2 (S2) satellite bands
(Table 3), according to the spectral response function provided by the European Space Agency (2019), which
describes the sensitivity of S2 devices to the energy of different wavelengths.

The formula used to calculate the central wavelength of a spectral band is given by (1):

AXS(A).dA

_J
Ae = [ s(.ax @
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where A and S denote the bandwidth (in nanometers) and the spectral response function of a given
multispectral instrument, respectively.

The data resampling process was conducted using the "hsdar" package available in the R language. This is
a powerful tool for analyzing high-resolution spectral data (HSI - Hyperspectral Imaging), which provides the
spectral Resampling function for the spectral resampling of data. This function is used to adjust the spectral
data to a new wavelength range and a new desired spectral resolution (Lehnert et al., 2022).

Table 3. Specifications of the sensors on board the Sentinel-2 satellites.

Band Band name Central wavelength [nm] Bandwidth [nm] Resolution [m]
BO1 Coastal aerosol 443 21 60
B02 Blue 490 66 10
B03 Green 560 36 10
B04 Red 665 31 10
BO5 RE1 705 15.5 20
BO6 RE2 740 15 20
BO7 RE3 783 20 20
BO8 NIR1 842 106 10
B8a NIR2 865 21.5 20
B09 Water vapour 945 20.5 60
B10 SWIR—cirrus 1375 30.5 60
B11 SWIR1 1610 92.5 20
B12 SWIR2 2190 180 20

To use the spectral resampling function, the original spectral data and the new wavelength desired for
resampling were supplied as parameters (Table 3), as well as the desired interpolation method, which by
default was linear interpolation.

After the resampling of leaf reflectance data into S2 bands, the algorithms were implemented to find a
vector of values capable of regressing the LNC.

Among the algorithms evaluated, Support Vector Regression (SVR) is a supervised Machine Learning (ML)
technique for dealing with regression problems (Drucker et al., 1996), which seeks a balance between the
complexity of the model and the prediction error.

Briefly, SVR aims to determine an optimal hyperplane f(x) so that the distance between it and the training
samples is as minimal as possible, i.e. where the allowed residuals do not exceed a predetermined value «.

Let S = {(xq,¥1), (2, ¥2), oo, (o ¥0)} € {X X Y}" be the training set, where n is the number of samples. For
each sample (x;,y;) where i = {1,2,...,n}, x; = {x;, x;,, ..., x;,, } is the set of reflectance values in m different
bands, and y; is the corresponding LNC.

The mathematical model for the SVR is characterized as a non-linear programming problem, given by
formula (2) (Wang et al., 2005):

1gn

—32is1 Xj= (- a)(aj—af){xi %y —eXy  (i+a)+Th,  yila +af) (2)

such that

Zn: (¢;—aj)=0

i=1
a;, a;i €[0,C], vi=1,..,n
where a;, a; are Lagrange multipliers, and C is a regularizing constant.

In addition to SVR, the Random Forest Regression (RFR) algorithm was also used, which is another
powerful approach to regression problems. According to Izbicki and Santos (2020), RFR is a non-parametric
ML algorithm that consists of creating B distinct trees, without correlation between them, and combining
their results to improve predictive power in comparison to an individual tree. To create B distinct trees, B
random samples of the original sample were used and covariates were chosen for each node created from a
randomly selected subset of the original covariates.

Thus, let g, (x) be the prediction function obtained by the b-th tree. The prediction function generated by
the random forest is given by:
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9@ = 235 g (3)

In predicting LNC concentrations, the initial evaluation aimed to assess the performance of SVR and RFR
models. Five SVR models and five RFR models were developed, each using a distinct dataset (Table 1). Each
model utilized 75% of its dataset for training, and the predictive capability of each model was evaluated using
reflectance samples from the remaining 25% of the data to predict LNC concentrations.

Next, to assess the transferability of SVR and RFR models in predicting LNC, new models were developed
following the architecture depicted in Figure 1.

In Figure 1's architecture, each dataset employed 100% of its samples to train both an SVR and an RFR
model. Thereafter, the predictive performance of each model was evaluated by estimating LNC values in the
other datasets (those not used in the model development process).

SVR
Source RFR Target
Datasets — —— — —— P Datasets
Dataset #1 Dataset #1
Dataset #2 Dataset #2
Dataset #3 Dataset #3
Dataset #4 Dataset #4
Dataset #5 Dataset #5

Figure 1. Architecture of the SVR and RFR models for evaluating the potential transferability of the predictive power of LNC between
different sets of plant species.

In other words, let D = {d;, d,, ..., d;} be the set of datasets used in this work, and M = {m, m,, ..., m;} the set of
LNC prediction models developed, where i = {1,2,3,4,5}. Each model m; was trained with data from d;. The evaluation
of m; was based on its ability to predict LNC using reflectance samples for each element in the subset D — {d;}.

This approach enabled investigation of the potential transferability of the predictive power of these
models across different groups of plants, assessing their ability for generalization and knowledge adaptation.

In this context, the Transfer Component Analysis (TCA) algorithm was also implemented to enable the
transfer of predictive capacity between the sets of reflectance values, which although different, are related to
the determination of LNC.

TCA is a transfer learning algorithm proposed by Pan et al. (2008), which seeks via dimensionality
reduction, to find a shared representation between different but related datasets. In this space, the distance
between the data distributions of the source set and the target set was minimal, making it possible to apply
common regression or classification algorithms, such as SVR and RFR. The distance between the distributions
of the sets can be obtained by the maximum mean discrepancy (MMD) in a KerneL Hilbert space (RKHS).
Based on this, let X; = [x4q, Xs3, -, X5 ] aNd X; = [X4q1, Xt2, ---» X | D€ the sets of reflectance values of the source
domain and the target domain respectively, the TCA seeks to find the projection matrix w from the following
eigenvalue decomposition problem (4):

KHKw = A(KLK + ul)w 4)
where

K = (K5 Kt Kes Kt )y Koy Koty Kesy Ki e are the kernel matrices, H = 1 — 117 /(ng + n,)

and
L {1 if X, = if X, — % oth

i =1 If x;,x; € — If x;,x; € otner cases
i,j nZ irAj s Tl? irj t nen,

Thus, in the final analysis, transferability was evaluated for models generated by combining the TCA
algorithm with SVR and TCA algorithm with RFR, as depicted in Figure 2.
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In the architecture of Figure 2, each pair of datasets underwent TCA. This process resulted in the creation
of newly adapted datasets with similar distributions, thereby facilitating the application of conventional
machine learning algorithms. Subsequently, prediction models, RFR and SVR, were trained using one of the
adapted datasets as the training set, referred to as the source dataset. Thereafter, the predictive capability of
these models was evaluated using the other adapted dataset as the test set, referred to as the target dataset.
This systematic procedure enabled us to observe the extent to which the adaptation provided by TCA
influences the predictive capacity of the models.

Source New Source New Target Target

Datasets Datasets Datasets Datasets

Dataset #1 e New Dataset #1 New Dataset #1 -+ Dataset #1

Dataset #2 — New Dataset #2 New Dataset #2 -+ Dataset #2
New Dataset #3 -+—— Dataset #3

Dataset #3 — New Dataset #3

Dataset #4 — New Dataset #4 New Dataset #4 - Dataset #4

Dataset #5 — New Dataset #5 New Dataset #5 - Dataset #5

t }

Figure 2. Architecture of the SVR and RFR models for evaluating the potential transferability of the predictive power of LNC between
different sets of plant species, after domain adaptation by TCA.

The prediction models were evaluated using the Root Mean Square Error (RMSE) metric, which revealed the
standard deviation of the residuals, i.e. a measure of the average deviation between the observed and the predicted.
The square root (5) was applied so that the unit would remain on the same scale as the original data.

RMSEQ9) = 'S, 0= 9)° ®

where y and y represent the actual and predicted LNC values, respectively, and n is the number of samples.

For the Python language, the ML library scikit-learn was used to implement the models, and the
hyperparameters of the models were determined using the Grid Search Cross Validation algorithm,
considering recurring values in the literature and 3 different kernel functions for the SVR (polynomial, radial
basis function and sigmoid). When running the TCA, the 'primal' kernel was used with a projection to 5
dimensions, to operate non-complex numerical values.

Results and discussion

For the five SVR and RFR models developed from 75% of the data in each set, the results obtained are
shown in Figure 3.

For the SVR models (in green in Figure 3), RMSE values of 0.40, 0.43, 0.48, 0.95, and 0.86% were obtained
for datasets #1, #2, #3, #4, and #5, respectively. The RFR models (in red in Figure 3) obtained results very close
to the SVR, with Root Mean Square Error (RMSE) values: 0.45, 0.54, 0.47, 0.94, and 0.76% for datasets #1, #2,
#3, #4, and #5, respectively.

The results of the transferability analysis of the SVR and RFR models, whose proposed architecture is
shown in Figure 1, are shown in Figures 4, 5, 6, 7, and 8.

None of the models generated were transferable to dataset 4, estimating a constant LNC value independent
of the reflectance values.
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Figure 3. Comparative results of the SVR (in green) and RFR (in red) models in predicting leaf nitrogen concentration (LNC). For
example, "Dataset #1" indicates that the SVR model is slightly more capable than the RFR model in predicting LNC for dataset #1, as it

has a lower root mean square error.
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Figure 4. Comparative result of the transferability analysis of the SVR (in green) and RFR (in red) models developed from dataset #1.
For example, "Dataset #1-#2" indicates that the RFR model trained on data from dataset #1 is slightly more capable than the SVR model
at predicting LNC from dataset #2, as it obtained a lower RMSE.
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Figure 5. Comparative result of the transferability analysis of the SVR and RFR models developed from dataset #2.
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Figure 6. Comparative result of the transferability analysis of the SVR and RFR models developed from dataset #3.

For the SVR models, the valid RMSE values ranged from 0.70 to 4.45%, with an average RMSE value of
approximately 2.32%. The highest RMSE values, above 4%, were obtained when transferring the model
developed with set #1 to set #5 (RMSE = 4.22%), the model developed with set #5 to set #2 (RMSE = 4.36%),
and the model developed with set #2 to set #5 (RMSE = 4.45%).
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Figure 7. Comparative result of the transferability analysis of the SVR and RFR models developed from dataset #4.
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Figure 8. Comparative result of the transferability analysis of the SVR and RFR models developed from dataset #5.

For the RFR models, the valid RMSE values ranged from 0.61 to 4.47%, with an average RMSE value of
2.46%. The highest RMSE values, above 4%, were obtained in the same situations as the SVR models, i.e. in
the transferable models from set #1 to set #5 (RMSE = 4.47%), from set #5 to set #2 (RMSE = 4.34%), and finally

from set #2 to set #5 (RMSE = 4.36%).
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The results of the transferability analysis of the models generated from the combination of Transfer
Component Analysis (TCA) with SVR and TCA with RFR algorithms, as proposed in the architecture presented
in Figure 2, are shown in Figures 9, 10, 11, 12, and 13.
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Figure 9. Comparative result of the transferability analysis of the SVR and RFR models developed from dataset #1 after domain
adaptation provided by TCA.
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Figure 10. Comparative result of the transferability analysis of the SVR and RFR models developed from dataset #2 after domain
adaptation provided by TCA.
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Figure 12. Comparative result of the transferability analysis of the SVR and RFR models developed from dataset #4 after domain

adaptation provided by TCA.

After implementing the TCA, the models were transferable to all dataset combinations. For the SVR models,
the valid RMSE values obtained ranged from 0.73 to 4.29%, with an average RMSE value of approximately 1.98%.
For the RFR models, the RMSE values ranged from 0.61 to 4.31%, with an average RMSE value of 2.24%.
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Figure 13. Comparative result of the transferability analysis of the SVR and RFR models developed from dataset #5 after domain
adaptation provided by TCA.

Figure 14 shows a comparison of the density graphs from datasets #1 and #4 before the TCA projection,
and Figure 15 shows the new density distribution from the same sets after the TCA. The comparison proposed
in the graphs provides an overview of the impact of the TCA on the adaptation of the domains of the sets.

BO1 BO3
&0 50
— Dataset #1 — Dataset #1 — Dataset #1
—— Dataset #4 —— Dataset #4 —— Dataset #4
50
)
'
30
z z
[ ]
3 &2
20
10 1o
[ [}
000 005 0lo 015 -005 000 005 015 020 025 -005 000 005 0lo 015 020 025
B804 BOG
— Dataset #1 - — Dataset #1 — Dataset #1
— Dataset #4. — Dataset #4. o — Dataset #4
'
&0
z 30 z
H -
. &
10 20
o o
00 o1 02 03 000 005 020 000 002 008 006 0.08 010
B07 BSa
—— Dataset #1 = Dataset #1 = Dataset #1
—— Dataset #4 g0 { — Dataset #4 80 { — Dataset #4
0 &
&% g%
2 2
o [
000 00z 004 006 008 010 000 002

B09

008 010 000 002 0.04 006 008 010

—— Dataset #1
—— Dataset #4

Density

—— Dataset #1 ES
—— Dataset #4

—— Dataset #1
—— Dataset #4

Density
8

e w B &

000 002 004 006 008 010

002 000 002

006

010 012 -0025 0000 0025 0050 0075 0100 0125 0150

Figure 14. Comparative density distribution of datasets #1 and #4 in the Sentinel-2 bands.
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The results obtained with the first models developed, five SVR and RFR models (Figure 3), confirmed that
both SVR and RFR are good LNC estimators. This result can be easily understood since the data used for model
development and validation are similar and within the same dataset. The models that did not perform
satisfactorily, with the highest RMSE for both the SVR and the RFR, were those developed from dataset #4,
followed by those developed from dataset #5. These datasets had the highest standard deviation related to
the LNC, as presented in Table 2.

On the contrary, the results presented in Figures 4, 5, 6, 7, and 8 show that the transferability of the SVR
and RFR models depends in part on the distribution of LNC and the spectral characteristics associated with
different sets of plants. Dataset 5, composed of data from only one plant species, was involved in the
development and validation of poor estimators, leading to overestimates and underestimates in LNC
predictions. Furthermore, none of the models generated were transferable to dataset 4. This result can be
attributed to the high dispersion of the data in this set, as seen in Table 2.

However, after the domain adaptation provided by TCA, transferable models were developed for all
combinations of datasets. The results obtained with the SVR and RFR models after the TCA, and the density graphs
of the sets shown in Figures 14 and 15, showed that the TCA effectively improved the performance of the SVR and
RFR models, being able to find a shared representation between different sets of reflectance values.

In future research, it would be beneficial to investigate the reasons behind the varying performance of the
SVR and RFR models across different datasets. Utilizing explainable artificial intelligence (XAI) techniques
could provide deeper insights into the factors influencing model performance, thereby enhancing our
understanding of model behavior and improving the applicability of these models in practical settings.

Conclusion

The spectral resampling process enabled the creation of effective LNC prediction models. This is because
the combination of TCA with SVR and TCA with RFR, efficiently extracted the spectral characteristics
common to the resampled leaf reflectance sets and reliably estimated the plant's LNC. It is possible to
generate transferable models capable of assisting in the monitoring of plant LNC, with less investment in
sampling and chemical analysis, and consequently, optimizing the decision-making process for nitrogen
fertilization management in agriculture.

Data availability

The data resulting from this study are not available in public repositories, as they comprise a large volume of
information, including the datasets resampled to the satellite bands, the data processed after the application of
the TCA algorithm, and the prediction outputs of each model. The analyses presented from Figure 3 onward clearly
and sufficiently describe the obtained results. Therefore, this item is considered not applicable.
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