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ABSTRACT. Simultaneous selection in genetic improvement presents difficulties in selecting qualitative
traits as well as the desired commercial ranges for quantitative traits. Thus, fuzzy logic has become an
alternative, enabling the computational modelling of the researcher’s experience. This study aimed to
assess the efficiency of fuzzy logic in simultaneous selection considering both qualitative and quantitative
descriptors. The developed methodology was applied to data from two experiments with kale half-sibs. The
first experiment was carried out in Vicosa in randomised blocks, with 24 families of kale half-sibs, 4
replications, and 5 plants per plot. The second experiment was carried out in Montes Claros in randomised
blocks, with 36 kale genotypes, 33 families of half-sibs, and 3 commercial cultivars, with 4 replications and
6 plants per plot. Quantitative and qualitative traits were evaluated, and individual genetic values were obtained
using REML/BLUP. Genetic gains were evaluated based on the Mulamba-Mock index and the developed fuzzy
systems. The selection gains were similar for quantitative traits, but fuzzy logic also selected qualitative traits,
and thus stands out as a potential tool for kale genetic improvement. The selection of individuals by the fuzzy
methodology enables estimated selection gains in a favourable direction for qualitative and quantitative traits,
enabling the automation of more accurate and standardised decision-making.
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Introduction

The use of varieties obtained through genetic improvement is considered one of the most important
strategies in modern agriculture. Improved varieties are more productive and present resistance to biotic and
abiotic stresses, higher nutraceutical quality, and lower environmental impacts and production costs (Rincker
et al., 2014; Fang & Xiong, 2015; Huang et al., 2016).

In breeding programmes, superior genotypes are obtained through the selection and consideration of
multiple characteristics. Selection should not be made based on just one character because cultivars of
economic merit combine multiple characters that are of interest to farmers and consumers (Bertini et al.,
2010; Rodrigues et al., 2011). Several selection indices can be applied, such as the classic index or the Smith
(1936) and Hazel (1943) index, the base index, and the sum of ranks index. Among them, the sum of ranks
index (Amaral Janior et al., 2010; Rosado et al., 2012; Luz et al., 2018), proposed by Mulamba and Mock (1978),
stands out. This nonparametric index is based on the linear combination of several uncorrelated characters,
so it has the advantage of not requiring the estimation of economic weights.

The genetic improvement of cabbage (Brassica oleracea L. var. acephala DC.), a vegetable of great economic
and food importance in several regions of the world, aims to select new cultivars with an individual height of
40-65 cm, a petiole length of 4-6 cm, a stem diameter of 3-5 cm, a leaf blade length of 15-25 ¢cm, and a width
of 12-22 cm. Qualitatively, the choice of new cultivars that stand out for the shape and margin of the leaf and
the colour of the vein and petiole are essential.

In this sense, there is still little research that relates the use of simultaneous selection indexes with
qualitative and quantitative traits, as well as the selection of traits with a pre-established commercial
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standard (Fernandes et al., 2022). The use of computational intelligence through fuzzy logic has become a
potential methodology, as it allows working with quantitative and qualitative data simultaneously (Casillas
et al., 2013; Pang & Bai, 2013). Through this model, it is possible to translate verbal expressions, generally
imprecise and from experts, into numerical values (Papadopoulos et al., 2011), which makes computational
automation possible in several areas, such as the classification of the best genotypes. This allows the quick
and accurate automation of classifications by computational systems. Although fuzzy logic is used
infrequently in agricultural sciences, several recent studies have demonstrated its applicability in plant
breeding, highlighting the efficiency of using fuzzy logic to automate plant adaptability and stability
(Carneiro et al., 2019), in the selection of coloured fibre cotton genotypes based on stability and adaptability
(Cardoso et al., 2021), in the simultaneous selection of sweet potato genotypes (Fernandes et al., 2022), as
well as for cultivar recommendation (Carneiro et al., 2018). Therefore, this study aimed to apply fuzzy logic
in simultaneous selection considering qualitative and quantitative descriptors and to compare its efficiency
with the Mulamba-Mock methodology in the evaluation of kale half-sib progenies.

Material and methods
Experimental setup and data acquisition

Experiment 1

The experiment was conducted at the Federal University of Vicosa (UFV) — Horta Velha, Vicosa, Minas
Gerais State, Brazil (20°45'26" S, 42°52'29” W; 648.74 m above sea level). The regional climate is classified by
KoOppen as a subtropical climate with a dry winter and a hot and rainy summer (Cwa), with recorded annual
average maximum and minimum temperatures of 26.4 and 14.8°C, respectively, and average annual
precipitation of 1,221.4 mm.

Twenty-four kale half-sib progenies from the Federal University of the Jequitinhonha and Mucuri Valleys
(UFVJM) germplasm bank, arranged in a randomised block design with four replications and five plants per
plot, were evaluated. Sowing was carried out in 128-cell Styrofoam trays in a protected environment under
50% shading, with daily irrigations.

Seedlings were transplanted to beds with an approximate width of 2.50 m and height of 0.30 m, using a
spacing of 1.00 x 0.50 m. Harvests were carried out every 14 days, for a total of 15 evaluations.

Experiment 2

The second experiment was conducted from October 2016 to August 2017 at the Institute of Agricultural
Sciences (ICA) of the Federal University of Minas Gerais, Montes Claros, Minas Gerais State, Brazil (16°41’ S,
43°50' W; 646.29 m above sea level). According to the Koppen classification, the regional climate is classified
as tropical Savanna with a dry winter and a rainy summer (AW).

A randomised block design with four replications was used. Thirty-six kale genotypes — 33 families of half-
sibs and 3 commercial cultivars (Manteiga, Manteiga Portuguesa, and Manteiga da Georgia) — were evaluated.
The half-sibs came from the UFV]M germplasm bank. Shoots were removed from the plants when they were
approximately 5 cm and rooted in 72-cell polystyrene trays filled with a commercial substrate. The shoots
remained in a greenhouse for 40 days until they reached the seedling point for field planting. The plots
consisted of six seedlings, transplanted in a double row to beds with an approximate width of 1.20 m and
spacing of 1.00 x 0.50 m. Harvests were carried out every 15 days.

Analysed traits

The following traits were evaluated in five plants per plot: the number of shoots (when they were
removed), the number of leaves, and marketable leaf fresh matter. Fully expanded leaves with leaf blade
length longer than 15 cm and without damage and signs of senescence were considered marketable (Azevedo
et al., 2017). The total number of leaves, number of shoots, and leaf fresh matter per plant obtained in all
harvests were considered for statistical analysis. The plant height was evaluated by measuring the distance
from the soil level to the tip of the tallest leaf, while the stem diameter was measured using a calliper at half
the height of the plant (Azevedo et al., 2017).

The fifth newest expanded leaf of each plant was used to evaluate the leaf blade length and width,
measured using a ruler graduated in centimetres, and the petiole length, measured using a ruler graduated in
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centimetres from its insertion in the stem to the beginning of the leaf blade. The fifth newest expanded leaf
was chosen for standardisation purposes in the evaluations.

The following traits were also evaluated using a score scale proposed by the International Board for Plant
Genetic Resources (International Board for Plant Genetic Resources [IBPGR], 1990): leaf blade shape (1 -
orbicular, 2 - elliptic, 3 - obovate, 4 — spatulate, and 5 — ovate), leaf margin shape (0 - entire, 1 — crenate, 2
- dentate, 3 - serrate, 4 — undulate, 5 — doubly dentate, and 6 - others), and petiole and main vein colour (1
- white, 2 — greenish-white, 3 — green, 4 — purple, 5 - red, and 6 — others).

Configuration and use of fuzzy logic

Three fuzzy systems were created to reduce the system complexity due to the large number of descriptors
considered in the kale genetic improvement. The first system was named ECP (easiness in cultural practices),
the second system was named LFP (leaf production), and the third system was named LFQ (leaf quality).
Subsequently, the outputs of these three fuzzy systems were used as the input to a system named FIM
(Figure 1), which allows obtaining a general score for the plants.
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Figure 1. Scheme of the fuzzy inference systems used as selection indices for easiness in cultural practices (ECP), leaf production
(LFP), leaf quality (LFQ), and all criteria simultaneously (FIM) in kale half-sib progenies.

Trapezoidal membership functions were used for all traits in the fuzzification step (Equation 1):
trapmf (x;a,b,c,d) = max (min (g, 1,2%:) , 0) (1)
with its parameters (a, b, ¢, and d) arbitrated according to the kale ideotype. Triangular functions were used
for qualitative traits and the ECP, LFP, and LFQ system outputs (Equation 2):

trimf (x; a, b, c) = max (min (ﬂ ﬂ) , O) (2)

b-a’c-b
The parameters (a, b, c, and d) were arbitrated in the model membership functions, considering each
evaluated trait (Table 1).
Rules were generated in the inference step by relating the input linguistic variables with the output
variable scores of each system. The number of rules for each system corresponds to the multiplication of the
number of categories of each considered input variable, reaching 81 for ECP (3 x 3 x 3 x 3), 81 for LFP (3 x 3 x
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3 x 3), 625 for LFQ (5 x 5 x 5 x 5), and 125 for FIM (5 x 5 x 5) (Supplementary Material). The ‘and’ connector
was used in all rules. The ‘Mamdani min’ methodology was used. The centroid method was used for
defuzzification. Thus, scores were obtained for each fuzzy system from the phenotypic values that indicate
the predilection of each genotype, with values ranging from 1 to 5. These criteria were used for selection. The
fuzzy logic systems were configured and employed by using the FuzzyToolkitUoN package of the R software
(R Core Team, 2019).

Table 1. Parameters arbitrated in the membership functions for input traits of the systems related to the easiness in cultural practices
(ECP), leaf production (LFP), and leaf quality (LFQ), as well as the ECP, LFP, and LFQ system outputs and input for the FIM system.

Input ECP
NS PH (cm) PL (cm) SD (mm)
Excellent: a=0, b= 0, c=30, d= 45 Low: a=0, b=0, ¢=20, d=35 Little: a=0, b=0, c=3, d=4 Thin: a=0, b=0, c=2, d=3
Medium: a=30, b=45, ¢c=75,d=90 Excellent: a=20, b=40, c=65, d=80 Excellent: a=3, b=4, c=6, d=7  Excellent: a=2, b=3, c=4, d=5
Bad: a=75, b=90, c=125, d= 125 Bad: a=70, b=90, c=175,d= 175  Long: a=6, b=8, c=35, d=35 Thick: a=4, b=5, c=8, d=8
Input PDF
NL FLM (g) LL (cm) LW (cm)
Bad: a=0, b= 0, c=60, d= 80 Bad: a=0, b=0, c=2, d=4 Bad 1: a=0, b=0, c=10, d=13 Bad 1: a=0, b=0, ¢=3, d=10
Medium: a=75, b=85, ¢c=100, d=115 Medium: a=2, b=4, c=6, d=8 Medium: a=10, b=15, ¢=25, d=30 Medium: a=7, b=12, ¢=22, d=27
Excellent: a=110, b=120, c=155, d= 155 Excellent: a=6,b=7,c=10d=10 Bad 2: a=28,b=31, ¢=53, d=53 Bad 2: a=26, b=29, c=47, d=47

Input ODF
LS LM vC PC
nl:a=0, b=1, c=2 nl: a=0, b=1, c=2 nl:a=0, b=1, c=2 nl: a=0, b=1, c=2
n2:a=1,b=2, c=3 n2:a=1,b=2, c=3 n2:a=1, b=2, c=3 n2:a=1,b=2, c=3
n3: a=2, b=3, c=4 n3: a=2, b=3, c=4 n3: a=2, b=3, c=4 n3: a=2, b=3, c=4
n4: a=3, b=4, c=5 n4: a=3, b=4, c=5 n4: a=3, b=4, c=5 n4: a=3, b=4, c=5
n5: a=4, b=5, c=6 n5: a=4, b=5, c=6 n5: a=4, b=5, c=6 n5: a=4, b=5, c=6

né6: a=5, b=6, c=7 - - -
n7: a=6, b=7, c=8 - - -
Outputs ECP, LFP e LFQ/Input FIM

ECP LFP LFQ
To bad: a=0, b=1, c=2 To bad: a=0, b=1, c¢=2 To bad: a=0, b=1, c=2
Bad: a=1, b=2, ¢=3 Bad: a=1, b=2, ¢=3 Bad: a=1, b=2, ¢=3
Medium: a=2, b=3, c=4 Medium: a=2, b=3, c=4 Medium: a=2, b=3, c=4
Good: a=3, b=4, c=5 Good: a=3, b=4, c=5 Good: a=3, b=4, c=5
Very good: a=4, b=5, c=6 Very good: a=4, b=5, c=6 Very good: a=4, b=5, c=6

NS, number of shoots; PH, plant height; PL, petiole length; SD, stem diameter; NL, number of leaves; FLM, fresh leaf matter; LL, leaf length; LW, leaf
width; LS, leaf shape; LM, leaf margin; VC, vein colour; PC, petiole colour.

Estimate of individual and simultaneous selection gains

The model y = Xr + Za + Wc + e was used for the statistical analysis of the quantitative descriptors and
scores obtained by the four fuzzy systems (using the phenotypic data), where y is the data vector, in which
y~NXr,V), V=ZAc2Z+WIc?W’+Ic?, o2 is the additive genetic variance, o2 is the environmental variance
between plots, and ¢? is the residual variance; r is the vector of the repeat effects (assumed to be fixed) added
to the overall mean; a is the vector of the individual additive genetic effects (random), in which a~N(0,Ac?);
p is the vector of the plot effects (random), in which ¢~N(0,Is2); and e is the vector of (random) errors, in
which e~N(0,I6?2). The uppercase letters represent incidence matrices for these effects. This model allowed
estimating the variance components and predicting the genetic values by the REML-BLUP methodology using
the sommer package of the R software (R Core Team, 2019). The variance components allowed obtaining the
estimates of heritability: h%a = 62/(c2 + 62 + 6?2); the coefficient of genotypic variation: CVgi% = 100 x
Va®3/OM; the coefficient of residual variation: CVe% = 100 x ¢2/0OM; and the coefficient of relative variation:
CVr = CVg/CVe, in which Va is the additive variance, Vplot is the plot variance, Ve is the residual variance,
and OM is the overall mean.

Direct and indirect gains expected with the selection of the best progenies (15% selection index) were
obtained through the genetic values of each trait. The genetic values allowed obtaining the rank for each plant
for all traits, and the sum of these ranks was estimated later and used as an index for simultaneous selection
(the Mulamba—-Mock index). The genetic values obtained from the scores of the four fuzzy systems were used
as a criterion for simultaneous selection. For this, the following estimators were used: DSG; (%) = 100 x (GV;
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- OM;)/OM,;, ISG;; (%) = 100 x (GVi; — OM;)/OM;, and SSG;; (%) = 100 x (GVS;; — OM;)/OM;, where DSG; (%) is the
direct selection gain for the i-th descriptor, GV is the mean of genotypic values of selected individuals (15%
best) for the i-th descriptor, OM; is the overall mean of the i-th descriptor, ISG; (%) is the indirect selection
gain for the i-th descriptor considering the selection of the best individuals for the j-th descriptor, GVj; is the
mean of genotypic values for the i-th descriptor of selected individuals considering the j-th descriptor, SSG;;
(%) is the simultaneous selection gain in the i-th evaluated descriptor considering the j-th index (fuzzy system
index [ECP, LFP, LFQ, and FIM], or the Mulamba—Mock index), and GVS;; is the mean of the genotypic values
of selected individuals considering the j-th index. The expected selection gains were determined by using the
R software (R Core Team, 2019). Pearson’s correlation was estimated to analyse the influence of the indices
in each of the studied variables using the cor.test function in the R software (R Core Team, 2019). Para verificar
a eficiencia da metodologia para a selecao de caracteres qualitativos, foi estimada a frequencia de plantas com
as caracteristicas desejadas nas amostras selecionadas considerando cada um dos critérios de selecao
(Mulamba—-Mock e os escores obtidos pelo sistema Fuzzy).

Results

The genetic parameters estimated for the two experiments (Table 2) presented genetic superiority for the
traits number of shoots and number of leaves, with coefficients of genotypic variation that were higher than
the coefficients of residual variation and, consequently, higher genetic variability. Experiment 2 presented
higher coefficients of residual variation for the other traits, demonstrating a higher environmental influence
on the traits.

Table 2. Estimation of the variance components and genetic parameters of eight descriptors in kale half-sib progenies obtained by the
REML-BLUP methodology.

Parameters NS PH PL SD NL FLM LL LW
Experiment 1
Va 390.72 2.62 10.39 0.02 55.32 0.37 11.42 8.12
Vparc 4.43 41.18 0.17 0.01 2.49 0.07 1.14 1.41
Ve 195.69 323.61 9.27 0.2 262.24 1.66 184 17.46
Vf 590.84 367.41 19.83 0.24 320.06 2.1 30.96 26.98
h%a 0.66 0.01 0.52 0.1 0.17 0.18 0.37 0.3
CVgi% 33.55 1.85 21.1 4.82 10.87 12.02 10.26 9.79
CVe% 5.78 8.98 4.13 3.47 3.72 6.24 3.71 5.84
CVr 2.9 0.1 2.55 0.7 1.46 0.96 1.38 0.84
Experiment 2
Va 241.94 141.39 1.00 0.12 248.80 0.21 0.67 4.01
Vplot 51.59 22.72 1.21 0.02 0.00 0.06 7.20 1.37
Ve 195.86 118.36 5.61 0.31 48.93 0.42 20.40 8.66
Vp 489.39 282.47 7.82 0.45 297.73 0.69 28.27 14.04
hZa 0.49 0.50 0.13 0.26 0.84 0.30 0.02 0.29
CVgi% 38.42 17.82 11.60 9.92 24.48 19.98 2.63 9.74
CVe% 34.57 16.30 27.41 16.14 10.86 28.48 14.49 14.32
CVr 1.11 1.09 0.42 0.61 2.25 0.70 0.18 0.68

NS, number of shoots; PH, plant height; PL, petiole length; SD, stem diameter; NL, number of leaves; FLM, fresh leaf matter; LL, leaf length; LW, leaf
width; Va, additive genetic variance; Vplot, plot variance; Ve, environmental variance between plots; Vp, phenotypic variance; h?a, strict sense
heritability; CVg, coefficient of genotypic variation; CVe, coefficient of residual variation; CVr, relationship between the coefficient of genotypic variation
and the coefficient of residual variation.

The highest heritability estimates were obtained in experiment 1 for the traits number of shoots (0.66) and
petiole length (0.52). The traits leaf length (0.3) and leaf width (0.37) also presented notable heritability
estimates. Experiment 2 had heritability estimates greater than or equal to 50% for plant height (0.50) and
the number of leaves (0.84). The trait number of shoots presented a heritability of 0.49.

The correlation of the fuzzy system scores showed low values between the ECP, LFP, and LFQ systems,
with estimates of less than 0.26 for experiment 1 and less than 0.11 for experiment 2. The FIM system had
higher correlations with the others, with values greater than 0.45 in both experiments (Table 3). The ECP
scores were greater than 0.32 for the traits number of shoots, plant height, and petiole length for both
experiments. Leaf production had higher correlations for the traits associated with this system, such as the
number of leaves, leaf fresh matter, the leaf length, and the leaf width. There were low correlation values
when comparing the LFQ system with the quantitative traits (Table 3).
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The estimates of expected gain with direct selection showed a higher magnitude (in modulus) for the
number of shoots in both experiments (47.87 and 41.46%, respectively) (Table 4). However, the selection for
this trait allowed unfavourable indirect gains for the traits stem diameter (-7.15%), number of leaves
(-7.61%), and leaf fresh matter (-15.90%) in experiment 1. On the other hand, the selection for the number
of shoots in experiment 2 allowed favourable indirect selection gains for the studied population.

There were favourable genetic gains for both experiments when considering the trait leaf fresh matter,
with a direct increase of 8.70% for experiment 1 and 18.06% for experiment 2. In addition, it allowed an
indirect increase in the number of leaves (6.24 and 11.53%, respectively) and a desirable decrease in the plant
height (-2.07 and -9.01%, respectively) (Table 4).

Table 3. Estimates of Pearson’s correlation between agronomic descriptors in kale half-sib progenies and the output (score) of four
fuzzy inference systems: ECP (easiness in cultural practices), LFP (leaf production), LFQ (leaf quality), and FIM (all criteria

simultaneously).
. Experiment 1 Experiment 2
Variables ECP LFP LFQ FIM ECP LFP LFQ FIM
ECP 1.00% 0.26" 0.13* 0.68%* 1.00%* ~0.01 20.10 0.45%
LFP 0.26%* 1.00%* ~0.01 0.59%* ~0.01 1.00%* 0.11 0.52%*
LFQ 0.13* ~0.01 1.00%* 0.58%* ~0.10 0.11 1.00%* 0.64%
FIM 0.68%* 0.59%% 0.58%* 1.00%* 0.45%* 0.52%% 0.64%% 1.00%*
NS ~0.78%* ~0.06 ~0.06 ~0.51%* ~0.73%* 0.07 0.05 ~0.30%*
PH ~0.34%* ~0.06 ~0.06 ~0.26%* ~0.51%* ~0.14* 0.13* ~0.20%*
PL ~0.40%* ~0.21%* ~0.02 —0.37%* ~0.32%* ~0.29%* ~0.08 ~0.36**
SD 0.13* 0.08 0.12* 0.21%% ~0.09 ~0.18%* ~0.05 ~0.17%*
NL 0.18%* 0.72%% ~0.29%* 0.35%* ~0.17%* 0.41%% 0.04 0.12*
FLM 0.19%* 0.35%% ~0.12% 0.25%* ~0.15%* ~0.05 ~0.06 ~0.14*
LL ~0.23%* ~0.56%* 0.04 ~0.39%* ~0.05 ~0.65%* ~0.22%* ~0.46**
LW ~0.23%* ~0.55%* 0.13* ~0.35%* ~0.01 ~0.58%* ~0.01 ~0.27%*

NS, number of shoots; PH, plant height; PL, petiole length; SD, stem diameter; NL, number of leaves; FLM, fresh leaf matter; LL, leaf length; LW, leaf
width. * p < 0.05 and ** p < 0.01 based on the t-test.

Table 4. Estimates of the expected gain (%) with direct (bold) and indirect (values above and below the main diagonal [presented in
bold], respectively) selection for agronomic descriptors evaluated in kale half-sib progenies.

Variables NS PH PL SD NL FLM LL LW
Experiment 1
NS -47.87 -0.03 -11.44 0.91 3.41 3.89 -1.67 -2.91
PH -1.46 -0.26 -2.24 -0.26 0.12 -2.07 -3.37 -2.35
PL -15.59 -0.02 -23.07 0.08 0.67 -0.64 -3.79 -4.24
SD -7.15 -0.04 -2.82 3.06 3.49 5.98 -1.52 -1.06
NL -7.61 -0.02 -3.47 0.84 9.63 6.24 -4.34 -3.86
FLM -15.9 0 1.57 1.51 6.25 8.7 -0.58 0.02
LL 2.74 -0.07 -9.2 -0.76 2.45 -1.59 -10.24 -6.79
LW 0.46 -0.05 -9.99 -0.63 3.42 -1.08 -7.02 -9.24
Experiment 2
NS -41.46 -3.99 -0.17 -1.07 -0.21 0.04 0.08 -0.56
PH -11.05 -19.05 -1.49 -3.36 -7.51 -9.21 -0.30 -3.12
PL 0.16 -3.85 -6.22 -0.51 5.34 -1.49 -0.35 -1.90
SD 5.76 0.06 0.44 8.36 14.02 11.54 0.26 3.95
NL 8.30 2.44 -0.22 3.50 38.45 11.53 -0.01 -1.42
FLM 0.56 2.73 2.36 5.45 20.59 18.06 0.41 3.45
LL 1.53 -7.19 -3.43 -3.58 -1.77 -8.12 -0.72 -6.04
LW 0.33 -2.04 -1.04 -3.19 1.86 -7.67 -0.40 -8.81
NS, number of shoots; PH, plant height; PL, petiole length; SD, stem diameter; NL, number of leaves; FLM, fresh leaf matter; LL, leaf length; LW, leaf
width.

Plant selection by the ECP system allowed higher estimates of selection gain in experiment 1 for the number of
shoots (—41.54%), followed by the petiole length (-14.99%). In addition, selection based on the LFP system showed
a favourable estimate of gain for traits related to yield, with an increase in the number of leaves (5.38%) and leaf
fresh matter (1.73%), as well as a reduction in the petiole length (-8.79%), the leaf length (-7.10%), and the leaf
width (-6.13%). The LFQ system, on the other hand, provided a low selection gain for quantitative traits for both
experiments (Table 5). The Mulamba—Mock index, traditionally used for simultaneous selection, showed estimates
of gains that are similar to those of the developed FIM fuzzy system (Table 5).
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Table 5. Estimates of the expected gain (%) with simultaneous selection using the Mulamba-Mock (MM) index and four fuzzy
inference systems, indicating the ECP system selection gain (SGecp), LFP system selection gain (SGlfp), LFQ system selection gain
(SGIfq), and FIM system selection gain (SGfim).

Variables MM SGecp SGlfp SGlfq SGfim
Experiment 1
NS -30.96 -41.54 -3.43 1.91 -29.11
PH -0.06 -0.04 -0.01 -0.01 -0.05
PL -13.33 -14.99 -8.79 -0.75 -13.59
SD 1.62 0.97 0.07 -0.5 0.63
NL 5.96 3.63 5.38 -2.5 5.26
FLM 5.81 3.72 1.73 -2.38 5.28
LL -4.41 -3.14 -7.1 -0.88 -5.33
LW -4.22 -2.63 -6.13 0.98 -5.04
Experiment 2
NS -14.25 5.46 -27.77 7.64 -16.38
PH -6.40 -3.03 -9.56 4.30 -6.62
PL -3.86 -2.56 -2.43 0.58 -2.99
SD 1.61 -1.54 -2.06 -0.94 -2.56
NL 19.52 13.51 -5.24 -1.23 0.69
FLM 3.07 -0.41 -4.58 -0.60 -4.85
LL -0.35 -0.48 -0.13 -0.17 -0.43
LW -3.79 -4.85 -1.03 0.14 -3.22
NS, number of shoots; PH, plant height; PL, petiole length; SD, stem diameter; NL, number of leaves; FLM, fresh leaf matter; LL, leaf length; LW,
leaf width.

However, selection based on the Mulamba-Mock method reduced the frequency of plants with the
desirable petiole colour (Table 6). The ECP and LFP systems, which did not consider qualitative traits in their
configuration, presented inferior results compared with the FIM system for all analysed traits (Table 6). However,
the LFQ system, aimed at leaf quality, selected plants with a higher frequency of desirable qualitative traits,
similarly to the FIM system. The FIM system showed lower performance than the LFQ system for the qualitative
traits leaf margin and petiole colour for both experiments. However, its results were more favourable for these
traits than those obtained by the Mulamba-Mock method in the studied populations (Table 6).

Table 6. The frequency (%) of plants with the desired traits for leaf shape (LS), leaf margin (LM), vein colour (VC), and petiole colour
(PC) considering the original population (no selection) and the indices obtained by the Mulamba-Mock (MM) methodology and fuzzy
inference systems.

Strategies LS (1, 2, and 3) LM (1 and 2) VC (2 and 3) PC (2 and 3)
Experiment 1
No selection 98.07 63.74 44.51 55.49
MM 100 89.09 47.27 49.09
ECP 96.74 77.17 54.35 60.87
LFP 98.7 71.43 41.55 48.05
LFQ 100 93.38 74.26 81.62
FIM 100 92.86 60.71 73.21
Experiment 2
No selection 914 68.7 68.7 77.3
MM 914 67.1 81.9 77.0
ECP 91.7 69.6 82.4 72.3
LFP 93.6 73.5 75.9 68.9
LFQ 95.3 79.2 94.7 92.6
FIM 96.8 74.3 96.3 91.6

ECP, easiness in cultural practices; LFP, leaf production; LFQ, leaf quality; FIM, all criteria simultaneously.

There were low coincidence indices between selected individuals between the traditional Mulamba-Mock
methodology and the developed fuzzy systems (Figures 2 and 3). The value between the Mulamba—Mock index
and the FIM system was 0.11 for experiment 1 and 0.13 for experiment 2. The FIM system allowed a higher
coincidence of selected individuals with the other systems, with a value greater than 0.5 for the ECP and LFP
systems for experiment 1 (Figure 2), and greater than 0.3 for the ECP, LFP, and LFQ systems for experiment 2
(Figure 3). These results indicate the selection superiority of the developed systems compared with the
traditional methodology.
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Figure 2. Graphical scattering of the coincidence of genotypes selected by the Mulamba—Mock methodology and the leaf production
(LFP), leaf quality (LFQ), easiness in cultural practices (ECP), and FIM fuzzy systems for experiment 1.
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Figure 3. Graphical scattering of the coincidence of genotypes selected by the Mulamba-Mock methodology and the leaf production
(LEP), leaf quality (LFQ), easiness in cultural practices (ECP), and FIM fuzzy systems for experiment 2.

Discussion

There are several methodologies for plant genetic improvement, but simultaneous selection is still a
challenge because it makes difficult situations in which commercial break and pre-defined qualitative traits
are desired. Fuzzy logic has proved to be a useful tool for breeding programmes. It allows linking information
from different parameters to understand the behaviour of crops relative to environmental variations (Carneiro
et al., 2018) by modelling the breeder’s experience and automating decision-making (Papadopoulos et al.,
2011; Mardani et al., 2015). Thus, genotypic analyses associated with the use of new technologies have been
used for the genetic improvement of several crops, such as kale.

The high estimates of the coefficient of genotypic variation for most traits showed the possibility of
success with the genetic improvement of the population under study, especially for the traits number of
shoots and number of leaves, which presented a coefficient of relative variation higher than the unit and
medium-to-high estimates of heritability (Table 2). The expressive estimate of heritability for the traits of
both experiments indicates high genotypic variation and low residual variation. It indicates that it is easy to
improve high-heritability traits (Table 2) in studied plants populations (Azevedo et al., 2017).

Azevedo et al. (2017) obtained medium-to-high heritability estimates when evaluating 22 kale genotypes.
The highest estimates were obtained for the number of leaves and leaf fresh matter, while the lowest estimates
were obtained for the plant height. Of note, these heritability values are higher than those obtained in the
populations investigated in the present study. This discrepancy may be associated with different genotypic
traits between the analysed populations and differences in the experimental design.
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There were positive and negative correlations between the evaluated traits and the four developed fuzzy
systems. The FIM system presented the highest correlation estimates (Table 3), demonstrating that it
efficiently gathered the descriptors included in the ECP, LFP, and LFQ systems. These findings highlight the
feasibility of using the simultaneous selection of traits in the populations under study. There was a low
correlation between the LFQ system scores and the yield attributes (Table 3), which is justified by the low
association of the traits that make up LFQ (leaf blade shape, leaf margin, petiole colour, and main vein colour)
with the evaluated quantitative variables.

Kale genetic improvement seeks to increase the yield per area and to facilitate cultural practices, resulting
in higher profitability (Azevedo et al., 2017). For this purpose, it is necessary to select genotypes with fewer
shoots, a shorter height, more leaves, and wider stems to reduce the need for staking and plant loss due to
lodging. These traits were favourably associated with the FIM system scores for experiment 1, while stem
diameter had unfavourable scores for experiment 2 (Table 3). This difference in stem diameter is associated
with the climate conditions of the Montes Claros region, where the experiment was carried out. According to
Chakwizira et al. (2009), stem diameter is influenced by genetic as well as the climate conditions of the
growing region.

This positive association with the FIM system scores indicates the efficiency of the fuzzy system developed
in the selection of progenies. The efficiency of fuzzy logic was verified in the recommendation of bean cultivar
strains, based on adaptability and stability (Carneiro et al., 2018; 2019). Moreover, it allowed for the
integration of soil, climate, and agricultural conditions in terms of support for decision-making regarding soil
nitrogen fertilisation (Papadopoulos et al., 2011).

Among all the analysed descriptors, the number of shoots enabled the highest direct and simultaneous
selection gains by the Mulamba—-Mock index and the ECP and FIM systems (Tables 4 and 5). A reduction in
the number of shoots is advantageous for kale production, as it reduces the costs associated with cultural
practices (Azevedo et al., 2017). Selection based on leaf fresh matter is advantageous for the genetic
improvement of the analysed populations, as it allows an increase in yield by directly increasing leaf fresh
matter and indirectly increasing the number of leaves. Furthermore, it provides the desired reduction for the
plant height, petiole length, leaf length, and leaf width.

The selection gains obtained by the LFQ system were low for all analysed quantitative traits due to the
distinct system characteristics — that is, it was developed for qualitative descriptors. The selection gains
obtained by the Mulamba—-Mock index showed similarities with those obtained by the FIM system for
quantitative traits. The comparison between selection indices in genetic improvement showed that the
Mulamba-Mock index is highly efficient in the selection of genotypes. Studies evaluating genetic selection
for the ornamental use of pepper obtained a Mulamba—-Mock index more efficient than the Smith and Hazel,
Pesek and Baker, and Williams selection indices (Luz et al., 2018). On the contrary, the Mulamba-Mock index
was more adequate for selecting corn hybrids for silage (Crevelari et al., 2018).

Regarding qualitative parameters, plants with an orbicular (1), elliptic (2), or obovate (3) leaf blade shape;
a crenate (1) or dentate (2) leaf margin shape; and greenish-white (2) or green (3) leaf main vein and petiole
colour are desired. The LFQ and FIM systems were superior to the Mulamba—Mock index and the ECP and LFP
systems for selecting these traits (Table 6). This efficient compilation between quantitative and qualitative
traits highlights the efficiency of the FIM fuzzy system (Figures 2 and 3) in the simultaneous selection of
descriptors for the genetic improvement of the studied kale populations: there were higher coincidence
indices among the selected individuals. Thus, the superiority of selection for the developed systems compared
with the traditional methodology can be confirmed.

The present study confirmed the efficiency of the Mulamba—-Mock index for quantitative traits, but this
index cannot be used for simultaneous analysis of data with distinct traits without significant losses in
selection. In this sense, the use of fuzzy logic stands out, as it has the advantage of working with non-linear
and complex processes compared with the traditional techniques (Petropoulos et al., 2017). It can adapt to
adverse situations due to the computational automation of specialised knowledge and the ability to make
decisions considering human subjectivity in a more precise and standardised way.

Another relevant feature of fuzzy algorithms is their multidisciplinary character, which allows the analysis
of quantitative and qualitative data simultaneously (Lee, 1990; Casillas et al., 2013; Pang & Bai, 2013), a fact
that may explain the satisfactory results obtained by the ECP, LFP, and LFQ systems separately and the
compilation of the data in the single FIM system in all analyses. Moreover, this system allows for the
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interaction and adequacy of data by experts, responding in less time than other methods (Mushtaq et al.,
2016). It allows breeders to model the desired commercial ranges to each trait and to select kale half-sib
families with a higher efficiency and a shorter selection time than selection indices.

Conclusion

The FIM system provided selection gains for quantitative traits similar to those obtained by the Mulamba—
Mock method, in addition to providing the selection of plants with desired qualitative traits. This fuzzy system
is efficient for the simultaneous selection of qualitative and quantitative traits, allowing the selection for
commercially pre-defined ranges for different kale populations. Therefore, the methodology is a useful tool
for kale genetic improvement, reducing time and human resources in breeding programmes.
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