<b>Estimating soybean yields with artificial neural networks
Resumo
The complexity of the statistical models used to estimate the productivity of many crops, including soybeans, restricts the use of this practice, but an alternative is the use of artificial neural networks (ANNs). This study aimed to estimate soybean productivity based on growth habit, sowing density and agronomic characteristics using an ANN multilayer perceptron (MLP). Agronomic data from experiments conducted during the 2013/2014 soybean harvest in Anápolis, Goiás State, B razil, were used to conduct this study after being normalized to an ANN-compatible range. Then, several ANNs were trained to choose the best-performing one. After training the network, a performance analysis was conducted to select the ANN with a performance most appropriate for the problem, and the selected network had a 98% success rate with training data and a 72% data validation accuracy. The application of the MLP to the data used in the experiment shows that it is possible to estimate soybean productivity based on agronomic characteristics, growth habit and population density through AI.
Downloads
DECLARAÇÃO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.