3D soil void space lacunarity as an index of degradation after land use change

  • Carlos Renato dos Santos Universidade Federal de Pernambuco http://orcid.org/0000-0001-8367-7006
  • Antônio Celso Dantas Antonino Universidade Federal de Pernambuco
  • Richard John Heck University of Guelph
  • Leandro Ricardo Rodrigues de Lucena Universidade Federal Rural de Pernambuco
  • Alex Cristóvão Holanda de Oliveira Universidade Federal Rural de Pernambuco
  • Antonio Samuel Alves da Silva Universidade Federal Rural de Pernambuco
  • Borko Stosic Universidade Federal Rural de Pernambuco
  • Romulo Simões Cezar Menezes Universidade Federal de Pernambuco
Palavras-chave: lacunarity, soil porosity, impact of land use change

Resumo

In this work, lacunarity analysis is performed on soil pores segmented by the pure voxel extraction method from soil tomography images. The conversion of forest to sugarcane plantation was found to result in higher sugarcane soil pore lacunarity than that of native forest soil, while the porosity was found to be lower. More precisely, this study shows that native forest has more porous soil with a more uniform spatial distribution of pores, while sugarcane soil has lower porosity and a more heterogeneous pore distribution. Moreover, validation through multivariate statistics demonstrates that lacunarity can be considered a relevant index of clustering and can explain the variability among soils under different land use systems. While porosity by itself represents a fundamental concept for quantification of the impact of land use change, the current findings demonstrate that the spatial distribution of pores also plays an important role and that pore lacunarity can be adopted as a complementary tool in studies directed at quantifying the effect of human intervention on soils.

Downloads

Não há dados estatísticos.

Referências

Allain, C., & Cloitre, M. (1991). Characterizing the lacunarity of random and deterministic fractal sets. Physical Review A, 44(6), 3552-3558. DOI: 10.1103/PhysRevA.44.3552

Beckers, E., Plougonven, E., Gigot, N., Léonard, A., Roisin, C., Brostaux, Y., & Degré, A. (2014). Coupling X-ray microtomography and macroscopic soil measurements: a method to enhance near-saturation functions? Hydrology and Earth System Sciences, 18(5), 1805-1817. DOI: 10.5194/hess-18-1805-2014

Borges, J. A. R., Pires, L. F., Cássaro, F. A. M., Auler, A. C., Rosa, J. A., Heck, R. J., & Roque, W. L. (2019). X-ray computed tomography for assessing the effect of tillage systems on topsoil morphological attributes. Soil and Tillage Research, 189, 25-35. DOI: 10.1016/j.still.2018.12.019

Borges, J. A. R., Pires, L. F., Cássaro, F. A. M., Roque, W. L., Heck, R. J., Rosa, J. A., & Wolf, F. G. (2018). X-ray microtomography analysis of representative elementary volume (REV) of soil morphological and geometrical properties. Soil and Tillage Research, 182, 112-122. DOI: 10.1016/j.still.2018.05.004

Caniego Moreal , J., San José Martínez, F., Ibánez Martin, J. J., & Pérez Gomes, R. (2012). Lacunarity of the spatial distributions of soil types in Europe. Vadose Zone Journal, 12(3), 1-9. DOI: 10.2136/vzj2012.0210

Caplan, J. S., Giménez, D., Subroy, V., Heck, R. J., Prior, S. A., Runion, G. B., & Torbert, H. A. (2017). Nitrogen-mediated effects of elevated CO2 on intra-aggregate soil pore structure. Global Change Biology, 23(4), 1585-1597. DOI: 10.1111/gcb.13496

Centurion, J. F., Freddi, O. d. S., Aratani, R. G., Metzner, A. F. M., Beutler, A. N., & Andrioli, I. (2007). Influência do cultivo da cana-de-açúcar e da mineralogia da fração argila nas propriedades físicas de latossolos vermelhos. Revista Brasileira de Ciência do Solo, 31, 199-209. DOI: 10.1590/S0100-06832007000200002

Charrad, M., Ghazzali, N., Boiteau, V., & Niknafs, A. (2014). NbClust: An R Package for determining the relevant number of clusters in a data set. Journal of Statistical Software, 61(6), 1-36. DOI: 10.18637/jss.v061.i06

Chun, H. C., Giménez, D., & Yoon, S. W. (2008). Morphology, lacunarity and entropy of intra-aggregate pores: Aggregate size and soil management effects. Geoderma, 146(1), 83-93. DOI: 10.1016/j.geoderma.2008.05.018

Costa, L. F., Antonino, A. C. D., Heck, R. J., Coutinho, A. P., Pimentel, R. M. d. M., Sales, F. J. R., ... Duarte, D. A. (2016). Microtomografia computadorizada de raios-X na caracterização morfométrica dos poros de Neossolo Regolítico Eutrofico. Journal of Environmental Analysis and Progress, 1(1), 24-33. DOI: 10.24221/jeap.1.1.2016.983.24-33

Davies, E. R. (2018). Chapter 5 - Edge detection (5th ed.). In E. R. Davies (Ed.), Computer vision (p. 119-145). New York, US: Academic Press.

Dong, P. (2009). Lacunarity analysis of raster datasets and 1D, 2D, and 3D point patterns. Computers & Geosciences, 35(10), 2100-2110. DOI: 10.1016/j.cageo.2009.04.001

Gefen, Y., Meir, Y., Mandelbrot, B. B., & Aharony, A. (1983). Geometric implementation of hypercubic lattices with noninteger dimensionality by use of low lacunarity fractal lattices. Physical Review Letters, 50(3), 145-148.

Haddad, N. M., Brudvig, L. A., Clobert, J., Davies, K. F., Gonzalez, A., Holt, R. D., ... Townshend, J. R. (2015). Habitat fragmentation and its lasting impact on Earth’s ecosystems. Science Advances, 1(2), 2-10. DOI: 10.1126/sciadv.1500052

Jefferies, D. A., Heck, R. J., Thevathasan, N. V., & Gordon, A. M. (2014). Characterizing soil surface structure in a temperate tree-based intercropping system using X-ray computed tomography. Agroforestry Systems, 88(4), 645-656. DOI: 10.1007/s10457-014-9699-0

Johnson, R. A., & Wichern, D. W. (2007). Applied multivariate statistical analysis (6th ed.). Upper Saddle River, NJ: Pearson.

Lin, B., & Yang, Z. R. (1986). A suggested lacunarity expression for Sierpinski carpets. Journal of Physics A: Mathematical and General, 19(2), 49-52. DOI: 10.1088/0305-4470/19/2/005

Luo, L., & Lin, H. (2009). Lacunarity and Fractal Analyses of Soil Macropores and Preferential Transport Using Micro-X-Ray Computed Tomography. Vadose Zone Journal, 8(1), 233-241. DOI: 10.2136/vzj2008.0010

Malhi, Y., & Román-Cuesta, R. M. (2008). Analysis of lacunarity and scales of spatial homogeneity in IKONOS images of Amazonian tropical forest canopies. Remote Sensing of Environment, 112(5), 2074-2087. DOI: 10.1016/j.rse.2008.01.009

Mandelbrot, B. B. (1983). The fractal geometry of nature (v. 173). New York, US: WH freeman and Company.

Martínez, F. S. J., Caniego, F. J., & García-Gutiérrez, C. (2017). Lacunarity of soil macropore space arrangement of CT images: Effect of soil management and depth. Geoderma, 287, 80-89. DOI: 10.1016/j.geoderma.2016.09.007

Martínez, M., Lana, X., Burgueño, A., & Serra de Larrocha, C. (2007). Lacunarity, predictability and predictive instability of the daily pluviometric regime in the Iberian Peninsula. Nonlinear Processes in Geophysics, 14(2), 109-121. DOI: 10.5194/npg-14-109-2007

Martín-Sotoca, J. J., Saa-Requejo, A., Grau, J. B., & Tarquis, A. M. (2017). New segmentation method based on fractal properties using singularity maps. Geoderma, 287, 40-53. DOI: 10.1016/j.geoderma.2016.09.005

Moraes, M. C. P. d., Mello, K. d., & Toppa, R. H. (2017). Protected areas and agricultural expansion: Biodiversity conservation versus economic growth in the Southeast of Brazil. Journal of Environmental Management, 188, 73-84. DOI: 10.1016/j.jenvman.2016.11.075

Ojeda-Magaña, B., Quintanilla-Domínguez, J., Ruelas, R., Tarquis, A. M., Gómez-Barba, L., & Andina, D. (2014). Identification of pore spaces in 3D CT soil images using PFCM partitional clustering. Geoderma, 217–218, 90-101. DOI: 10.1016/j.geoderma.2013.11.005

Pires, L. F., Borges, J. A. R., Rosa, J. A., Cooper, M., Heck, R. J., Passoni, S., & Roque, W. L. (2017). Soil structure changes induced by tillage systems. Soil and Tillage Research, 165, 66-79. DOI: 10.1016/j.still.2016.07.010

Plotnick, R. E., Gardner, R. H., & O'Neill, R. V. (1993). Lacunarity indices as measures of landscape texture. Landscape Ecology, 8(3), 201-211. DOI: 10.1007/BF00125351

Ranta, P., Blom, T. O. M., Niemelä, J., Joensuu, E., & Siitonen, M. (1998). The fragmented Atlantic rain forest of Brazil: size, shape and distribution of forest fragments. Biodiversity & Conservation, 7(3), 385-403. DOI: 10.1023/A:1008885813543

Roy, A., Perfect, E., Dunne, W. M., Odling, N., & Kim, J.-W. (2010). Lacunarity analysis of fracture networks: Evidence for scale-dependent clustering. Journal of Structural Geology, 32(10), 1444-1449. DOI: 10.1016/j.jsg.2010.08.010

Saraçli, S., Doğan, N., & Doğan, İ. (2013). Comparison of hierarchical cluster analysis methods by cophenetic correlation. Journal of Inequalities and Applications, 2013(1), 203. DOI: 10.1186/1029-242X-2013-203

Scarfe, W. C., & Farman, A. G. (2008). What is Cone-Beam CT and How Does it Work? Dental Clinics of North America, 52(4), 707-730. DOI: 10.1016/j.cden.2008.05.005

Schlüter, S., & Vogel, H.-J. (2011). On the reconstruction of structural and functional properties in random heterogeneous media. Advances in Water Resources, 34(2), 314-325. DOI: 10.1016/j.advwatres.2010.12.004

Stehlík, M., Střelec, L., & Thulin, M. (2014). On robust testing for normality in chemometrics. Chemometrics and Intelligent Laboratory Systems, 130, 98-108. DOI: 10.1016/j.chemolab.2013.10.010

Torre, I. G., Losada, J. C., Heck, R. J., & Tarquis, A. M. (2018). Multifractal analysis of 3D images of tillage soil. Geoderma, 311(Suppl.C), 167-174. DOI: 10.1016/j.geoderma.2017.02.013

Torre, I. G., Martín-Sotoca, J. J., Losada, J. C., López, P., & Tarquis, A. M. (2020). Scaling properties of binary and greyscale images in the context of X-ray soil tomography. Geoderma, 365, 114205. DOI: 10.1016/j.geoderma.2020.114205

Wang, W., Kravchenko, A. N., Smucker, A. J. M., & Rivers, M. L. (2011). Comparison of image segmentation methods in simulated 2D and 3D microtomographic images of soil aggregates. Geoderma, 162(3), 231-241. DOI: 10.1016/j.geoderma.2011.01.006

Wildenschild, D., & Sheppard, A. P. (2013). X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems. Advances in Water Resources, 51, 217-246. DOI: 10.1016/j.advwatres.2012.07.018

Xia, Y., Cai, J., Perfect, E., Wei, W., Zhang, Q., & Meng, Q. (2019). Fractal dimension, lacunarity and succolarity analyses on CT images of reservoir rocks for permeability prediction. Journal of Hydrology, 579, 124198. DOI: 10.1016/j.jhydrol.2019.124198

Zeng, Y., Payton, R. L., Gantzer, C. J., & Anderson, S. H. (1996). Fractal dimension and lacunarity of bulk density determined with X-ray computed tomography. Soil Science Society of America Journal, 60(6), 1718-1724. DOI: 10.2136/sssaj1996.03615995006000060016x

Publicado
2020-04-03
Como Citar
Santos, C. R. dos, Antonino, A. C. D., Heck, R. J., Lucena, L. R. R. de, Oliveira, A. C. H. de, Silva, A. S. A. da, Stosic, B., & Menezes, R. S. C. (2020). 3D soil void space lacunarity as an index of degradation after land use change. Acta Scientiarum. Agronomy, 42(1), e42491. https://doi.org/10.4025/actasciagron.v42i1.42491

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus