Weed-removal system based on artificial vision and movement planning by A* and RRT techniques

  • Leonardo Enrique Solaque Guzmán Universidad Militar Nueva Granada
  • Marianne Lorena Romero Acevedo Universidad Militar Nueva Granada
  • Adriana Riveros Guevara Universidad Militar Nueva Granada http://orcid.org/0000-0001-6617-794X
Palavras-chave: mobile robotics, precision agriculture, weed recognition, weed removal, trajectory planning.

Resumo

The recent exploration of autonomous robotics tasks in agro-industry has permitted the integration of theories of artificial vision and mobile robotics with tasks in precision agriculture. Artificial vision allows for the classification of weeds and crops from images of plantations. With 3D-image processing systems, the location of the weeds is determined, and then the movement of the tool responsible for eradication is proposed. This article presents the solution for finding weeds within a crop field using classifiers and the integration of a 3D-vision system that builds a point cloud featuring the plants to safeguard, the weeds and the free space using Zed technology. With this information, search techniques such as A* (A star) and RRT (Rapidly exploring Random Tree) are used to determine the trajectory that the weed-removal tool must follow. The last feature is an integral part of an XYZ-positioning system, and this is part of a mobile robot dedicated to precision agriculture tasks. 

Downloads

Não há dados estatísticos.

Referências

Ahmed, F., Al-Mamun, H. A., Bari, A. S. M. H., Hossain, E., & Kwan, P. (2012). Classification of crops and weeds from digital images: A support vector machine approach. Crop Protection, 40, 98-104. DOI: 10.1016/j.cropro.2012.04.024

Auat Cheein, F. A., & Carelli, R. (2013). Agricultural robotics: Unmanned robotic service units in agricultural tasks. IEEE Industrial Electronics Magazine, 7(3), 48-58. DOI: 10.1109/MIE.2013.2252957

Benevides, J. R. S., & Grassi, V. (2016). Autonomous Path Planning of Free-Floating Manipulators Using RRT-Based Algorithms. Proceedings - 12th LARS Latin American Robotics Symposium and 3rd SBR Brazilian Robotics Symposium, LARSSBR 2015 - Part of the Robotics Conferences 2015, 139-144. DOI: 10.1109/LARS-SBR.2015.47

Bergerman, M., Maeta, S. M., Zhang, J., Freitas, G. M., Hamner, B., Singh, S., & Kantor, G. (2015). Robot farmers: Autonomous orchard vehicles help tree fruit production. IEEE Robotics and Automation Magazine, 22(1), 54-63. DOI: 10.1109/MRA.2014.2369292

Lamb, D. W., & Brown, R. B. (2001). Remote-sensing and mapping of weeds in crops. Journal of Agricultural Engineering Research, 78(4), 347-358. DOI: 10.1006/jaer.2000.0660

Latombe, J. C. (1991). Robot Motion Planning. Norwell, MA:Kluver Academic Publisher. DOI: 10.1007/978-14615-4022-9

LaValle, S. (2006). Planning Algorithms. Cambridge, UK: Cambridge University Press. doi:10.1017/CBO9780511546877

McCartin, B. J. (1991). Theory of exponential splines. Journal of Approximation Theory, 66(1), 1-23. DOI: 10.1016/0021-9045(91)90050-K

Muangkasem, A., Thainimit, S., Keinprasit, R., & Isshiki, T. (2010). Weed detection over between-row of sugarcane fields using mahine vision with shadow robustness technique for variable rate herbicide applicator. Energy Research Journal, 8(2), 22-31. DOI: 10.3844/erjsp.2017.22.31

Pérez, A. J., López, F., Benlloch, J. V., & Christensen, S. (2000). Colour and shape analysis techniques for weed detection in cereal fields. Computers and Electronics in Agriculture, 25(3), 197-212. DOI: 10.1016/S0168-1699(99)00068-X

Pulido-Rojas, C. A., Molina-Villa, M. A., & Solaque-Guzmán, L. E. (2016). Machine vision system for weed detection using image filtering in vegetables crops. Revista Facultad de Ingeniería Universidad de Antioquia, 80, 124-130. DOI: 10.17533/udea.redin.n80a13

Pulido Rojas, C., Solaque Guzmán, L., & Velasco Toledo, N. (2017). Weed recognition by SVM texture feature classification in outdoor vegetable crops images. Ingeniería E Investigación, 37(1), 68-74. DOI: 10.15446/ing.investig.v37n1.54703

Shinde, A., & Shukla, M. (2014). Crop Detection by Machine Vision for Weed Management. International Journal of Advances in Engineering & Technology, 7(3), 818-826.

Stafford, J. V. (2000). Implementing precision agriculture in the 21st century. Journal of Agricultural and Engineering Research, 76(3), 267-275. DOI: 10.1006/jaer.2000.0577

Wiles, L. J. (2011). Software to quantify and map vegetative cover in fallow fields for weed management decisions. Computers and Electronics in Agriculture, 78(1), 106-115. DOI: 10.1016/j.compag.2011.06.008

Zhang, N., Wang, M., & Wang, N. (2002). Precision agriculture—a worldwide overview. Computers and Electronics in Agriculture, 36(2-3), 113–132. DOI: 10.1016/S0168-1699(02)00096-0

Publicado
2019-05-24
Como Citar
Solaque Guzmán, L. E., Acevedo, M. L. R., & Guevara, A. R. (2019). Weed-removal system based on artificial vision and movement planning by A* and RRT techniques. Acta Scientiarum. Agronomy, 41(1), e42687. https://doi.org/10.4025/actasciagron.v41i1.42687
Seção
Engenharia Agrícola

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus