Weed-removal system based on artificial vision and movement planning by A* and RRT techniques
Resumo
The recent exploration of autonomous robotics tasks in agro-industry has permitted the integration of theories of artificial vision and mobile robotics with tasks in precision agriculture. Artificial vision allows for the classification of weeds and crops from images of plantations. With 3D-image processing systems, the location of the weeds is determined, and then the movement of the tool responsible for eradication is proposed. This article presents the solution for finding weeds within a crop field using classifiers and the integration of a 3D-vision system that builds a point cloud featuring the plants to safeguard, the weeds and the free space using Zed technology. With this information, search techniques such as A* (A star) and RRT (Rapidly exploring Random Tree) are used to determine the trajectory that the weed-removal tool must follow. The last feature is an integral part of an XYZ-positioning system, and this is part of a mobile robot dedicated to precision agriculture tasks.
Downloads
Referências
Ahmed, F., Al-Mamun, H. A., Bari, A. S. M. H., Hossain, E., & Kwan, P. (2012). Classification of crops and weeds from digital images: A support vector machine approach. Crop Protection, 40, 98-104. DOI: 10.1016/j.cropro.2012.04.024
Auat Cheein, F. A., & Carelli, R. (2013). Agricultural robotics: Unmanned robotic service units in agricultural tasks. IEEE Industrial Electronics Magazine, 7(3), 48-58. DOI: 10.1109/MIE.2013.2252957
Benevides, J. R. S., & Grassi, V. (2016). Autonomous Path Planning of Free-Floating Manipulators Using RRT-Based Algorithms. Proceedings - 12th LARS Latin American Robotics Symposium and 3rd SBR Brazilian Robotics Symposium, LARSSBR 2015 - Part of the Robotics Conferences 2015, 139-144. DOI: 10.1109/LARS-SBR.2015.47
Bergerman, M., Maeta, S. M., Zhang, J., Freitas, G. M., Hamner, B., Singh, S., & Kantor, G. (2015). Robot farmers: Autonomous orchard vehicles help tree fruit production. IEEE Robotics and Automation Magazine, 22(1), 54-63. DOI: 10.1109/MRA.2014.2369292
Lamb, D. W., & Brown, R. B. (2001). Remote-sensing and mapping of weeds in crops. Journal of Agricultural Engineering Research, 78(4), 347-358. DOI: 10.1006/jaer.2000.0660
Latombe, J. C. (1991). Robot Motion Planning. Norwell, MA:Kluver Academic Publisher. DOI: 10.1007/978-14615-4022-9
LaValle, S. (2006). Planning Algorithms. Cambridge, UK: Cambridge University Press. doi:10.1017/CBO9780511546877
McCartin, B. J. (1991). Theory of exponential splines. Journal of Approximation Theory, 66(1), 1-23. DOI: 10.1016/0021-9045(91)90050-K
Muangkasem, A., Thainimit, S., Keinprasit, R., & Isshiki, T. (2010). Weed detection over between-row of sugarcane fields using mahine vision with shadow robustness technique for variable rate herbicide applicator. Energy Research Journal, 8(2), 22-31. DOI: 10.3844/erjsp.2017.22.31
Pérez, A. J., López, F., Benlloch, J. V., & Christensen, S. (2000). Colour and shape analysis techniques for weed detection in cereal fields. Computers and Electronics in Agriculture, 25(3), 197-212. DOI: 10.1016/S0168-1699(99)00068-X
Pulido-Rojas, C. A., Molina-Villa, M. A., & Solaque-Guzmán, L. E. (2016). Machine vision system for weed detection using image filtering in vegetables crops. Revista Facultad de Ingeniería Universidad de Antioquia, 80, 124-130. DOI: 10.17533/udea.redin.n80a13
Pulido Rojas, C., Solaque Guzmán, L., & Velasco Toledo, N. (2017). Weed recognition by SVM texture feature classification in outdoor vegetable crops images. Ingeniería E Investigación, 37(1), 68-74. DOI: 10.15446/ing.investig.v37n1.54703
Shinde, A., & Shukla, M. (2014). Crop Detection by Machine Vision for Weed Management. International Journal of Advances in Engineering & Technology, 7(3), 818-826.
Stafford, J. V. (2000). Implementing precision agriculture in the 21st century. Journal of Agricultural and Engineering Research, 76(3), 267-275. DOI: 10.1006/jaer.2000.0577
Wiles, L. J. (2011). Software to quantify and map vegetative cover in fallow fields for weed management decisions. Computers and Electronics in Agriculture, 78(1), 106-115. DOI: 10.1016/j.compag.2011.06.008
Zhang, N., Wang, M., & Wang, N. (2002). Precision agriculture—a worldwide overview. Computers and Electronics in Agriculture, 36(2-3), 113–132. DOI: 10.1016/S0168-1699(02)00096-0
DECLARAÇÃO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.