Reserve metabolism of stored and germinated Araucaria angustifolia seeds

  • Cristhyane Garcia Araldi Universidade do Estado de Santa Catarina
  • Cileide Maria Medeiros Coelho Universidade do Estado de Santa Catarina
Palavras-chave: Brazilian pine; conifer; protein profile; reserve mobilization.

Resumo

Germination metabolism of recalcitrant seeds of Araucaria angustifolia is activated in storage, which complicates the seeds conservation and utilization. This study aimed to identify the changes in the reserve metabolites of A. angustifolia seeds throughout storage in order to understand the processes of hydrolysis caused by germination metabolism. Mature seeds were harvested in southern Brazil and stored in an ambient environment and cold chamber conditions. Biochemical analyses were performed for embryos and megagametophytes from seeds stored for 0, 15, 30, 45, and 90 days. Due to seeds being in advanced germination in storage, they were evaluated at 90 days in different early developmental categories: I – seeds with mature embryos, II – seeds with embryos showing apparent elongation along the embryonic axis, and III – seeds with root protrusion. Higher contents of carbohydrate, protein, and amino acids were observed in embryos compared to megagametophytes, and these metabolites were decreased after onset of germination, especially in the embryo tissue. Mobilization of metabolites in megagametophytes would probably increase in later stages of germination. It is suggested that such alterations are not due to deterioration of reserve components, but instead are based on seed metabolism, which remains active after harvest with hydrolysis of metabolites providing energy for germination.

Downloads

Não há dados estatísticos.

Referências

Alfenas, A. C. (1998). Eletroforese de isoenzimas e proteínas afins: fundamentos e aplicações em plantas e microrganismos. Viçosa, MG: UFV.

Amarante, C. V. T., Mota, C. S., Megguer, C. A., & Ide, G. M. (2007). Conservação pós-colheita de pinhões [sementes de Araucaria angustifolia (Bertoloni) Otto Kuntze] armazenados em diferentes temperaturas. Ciência Rural, 37(2), 346-351. DOI: 10.1590/S0103-84782007000200008

Association of Official Analytical Chemists [AOAC]. (1995). Official methods of analysis (16th ed.). Washington, D.C.: AOAC.

Araldi, C. G., & Coelho, C. M. M. (2015). Establishment of post-harvest early-developmental categories for viability maintenance of Araucaria angustifolia seeds. Acta Botanica Brasilica, 29(4), 526-533. DOI: 10.1590/0102-33062015abb0061

Araldi, C. G., Coelho, C. M. M., Gaziola, S. A., & Azevedo, R. A. (2016a). Storage elicits a fast antioxidant enzyme activity in Araucaria angustifolia embryos. Acta Physiologiae Plantarum, 38(201), 1-10. DOI 10.1007/s11738-016-2219-2

Araldi, C. G., Coelho, C. M. M., & Maraschin, M. (2016b). Metabolic profile of Brazilian pine embryos and megagametophyte of stored seeds. African Journal of Agricultural Research, 11(9), 760-768. DOI: 10.5897/AJAR2015.10054

Araldi, C. G., Coelho, C. M. M., & Shibata, M. (2018). Storage potential of local brazilian pine seed varieties. Floresta e Ambiente, 25(2), e00016815. DOI: 10.1590/2179-8087.016815

Astarita, L. V., Floh, E. I. S., & Handro, W. (2004). Free amino acid, protein and water content changes associated with seed development in Araucaria angustifolia. Biologia Plantarum, 47(1), 53-59. DOI: 10.1023/A:1027376730521

Azevedo, R. A., Alas, R., Smith, R. J., & Lea, P. J. (1998). Response of antioxidant enzymes to transfer from elevated carbon dioxide to air and ozone fumigation, in the leaves and roots of wild-type and a catalase-deficient mutant of barley. Physiologia Plantarum, 104(2), 280-292. DOI: 10.1034/j.1399-3054.1998.1040217.x

Balbuena, T. S., Silveira, V., Junqueira, M., Dias, L. L. C., Santa-Catarina, C., Shevchenko, A. N. D., & Floh, E. I. S. (2009). Changes in the 2-DE protein profile during zygotic embryogenesis in the Brazilian Pine (Araucaria angustifolia). Journal of Proteomics, 72(3), 337-352. DOI: 10.1016/j.jprot.2009.01.011

Balbuena, T. S., Jo, L., Pieruzzi, F. P., Dias, L. L. C., Silveira, V., Santa-Catarina, C., Junqueira, M., Thelen, J. J., Shevchenko, A., & Floh, E. I. S. (2011). Differential proteome analysis of mature and germinated embryos of Araucaria angustifolia. Phytochemistry, 72(4-5), 302-311. DOI: 10.1016/j.phytochem.2010.12.007

Barbedo, C. J., Centeno. D. D. C., & Figueiredo-Ribeiro, R. D. C. L. (2013). Do recalcitrant seeds really exist? Hoehnea, 40(4), 583-595. DOI: 10.1590/S2236-89062013000400001

Berjak, P., & Pammenter, N. W. (2008). From Avicennia to Zizania: Seed recalcitrance in perspective. Annals of Botany, 101(2), 213-228. DOI: 10.1093/aob/mcm168

Berjak, P., & Pammenter, N. W. (2013). Implications of the lack of desiccation tolerance in recalcitrant seeds. Frontiers in Plant Science, 4(478), 1-9. DOI: 10.3389/fpls.2013.00478

Bewley, J. D., Bradford, K. J., Hilhorst, H. W. M., & Nonogaki, H. (2013). Seeds: physiology of development, germination and dormancy (3rd ed.). New York, Heidelberg, 'Dordrecht', London: UK. Springer.

Bieleski, R. L., & Turner, N. A. (1966). Separation and estimation of amino acids in crude plant extracts by thin-layer electrophoresis and chromatography. Analytical Biochemistry, 17(2), 278-293. DOI: 10.1016/0003-2697(66)90206-5

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. DOI: 10.1016/0003-2697(76)90527-3

Brasil. (2008). Instrução Normativa n° 6 de 26 de setembro de 2008. Retrieved on Nov. 24, 2017 from http://www.mma.gov.br/estruturas/ascom_boletins/_arquivos/83_19092008034949.pdf

Caçola, Á. V., Amarante, C. V. T., Fleig, F. D., & Mota, C. S. (2006). Qualidade fisiológica de sementes de Araucaria angustifolia (Bertol.) Kuntze submetidas a diferentes condições de armazenamento e a escarificação. Ciência Florestal, 16(4), 391-398. DOI: 10.5902/198050981920

Capocchi, A., Muccilli, V., Casani, S., Foti, S., Galleschi, L., & Fontanini, D. (2011). Proteolytic enzymes in storage protein mobilization and cell death of the megagametophyte of Araucaria bidwillii Hook. post-germinated seeds. Planta, 233(4), 817-830. DOI: 10.1007/s00425-010-1342-3

Dillenburg, L. R., Rosa, L. M. G., & Mósena, M. (2010). Hypocotyl of seedlings of the large-seeded species Araucaria angustifolia: An important underground sink of the seed reserves. Trees - Structure and Function, 24(4), 705-711. DOI: 10.1007/s00468-010-0440-y

Dubois, M., Giles, K. A., & Hamilton, J. K. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350-356.

Epagri/Ciram. (2014). Atlas climatológico do estado de Santa Catarina. Florianópolis, SC: Epagri.

Farrant, J. M., Pammenter, N. W., & Berjak, P. (1989). Germination-associated events and the desiccation sensitivity of recalcitrant seeds - a study on three unrelated species. Planta, 178(2), 189-198. DOI: 10.1007/BF00393194

Ferreira, A. G., Handro, W. (1979). Aspects of seed germination in Araucaria angustifolia (Bert.) O. Ktze. Brazilian Journal of Botany, 2(1), 7-13.

Garcia, C., Shibata, M., Coelho, C. M. M., Soares, F. L. F., & Guerra, M. P. (2012). Alterações no perfil proteico em sementes de Araucaria angustifolia durante a maturação e sua relação com a viabilidade. Magistra, 24(4), 263-270.

Garcia, C., Coelho, C. M. M., Maraschin, M. & Oliveira, L. M. (2014). Conservação da viabilidade e vigor de sementes de Araucaria angustifolia (Bert.) O. Kuntze durante o armazenamento. Ciência Florestal, 24(4), 857-866. DOI: 10.5902/1980509816586

Jo, L., Santos, A. L. W., Bueno, C. A., Barbosa, H. R., & Floh, E. I. S. (2014). Proteomic analysis and polyamines, ethylene and reactive oxygen species levels of Araucaria angustifolia (Brazilian pine) embryogenic cultures with different embryogenic potential. Tree Physiology, 34(1), 94-104. DOI: 10.1093/treephys/tpt102

Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680-685. DOI: 10.1038/227680a0

Lamarca, E. V., Camargo, M. B. P., Teixeira, S. P., Silva, E. A. A., Faria, J. M. R., & Barbedo, C. J. (2016). Variations in desiccation tolerance in seeds of Eugenia pyriformis: dispersal at different stages of maturation. Revista Ciência Agronômica, 47(1), 118-126. DOI:10.5935/1806-6690.20160014

Mccready, R. M., Guggolz, J., Silviera, V., & Owens, H. S. (1950). Determination of starch and amylase in vegetables. Analytical Chemistry, 22(9), 1156-1158. DOI: 10.1021/ac60045a016

Navarro, B. V., Elbl, P., Souza, A. P., Jardim, V., Oliveira, L. F., Macedo, A. F., … E. I. S. Floh. (2017). Carbohydrate-mediated responses during zygotic and early somatic embryogenesis in the endangered conifer, Araucaria angustifolia. PLoS ONE 12(7), e0180051. DOI: 10.1371/journal.pone.0180051

Obroucheva, N. V., Lityagina, S. V., Novikova, G. V., & Sin’Kevich, I. A. (2012). Vacuolar status and water relations in embryonic axes of recalcitrant Aesculus hippocastanum seeds during stratification and early germination. AoB Plants, 2012(1), 1-14. DOI: 10.1093/aobpla/pls008

Oliveira, L. F., Elbl, P., Navarro, B. V., Macedo, A. F., Santos, A. L. W., & E. I. S. Floh. (2017). Elucidation of the polyamine biosynthesis pathway during Brazilian pine (Araucaria angustifolia) seed development. Tree Physiology, 37(1), 116-130. DOI:10.1093/treephys/tpw107

Pammenter, N. W., & Berjak, P. (2013). Development of the understanding of seed recalcitrant and implications for ex situ conservation. Biotecnología Vegetal, 13(3), 131–144.

Panza, V., Láinez, V., Maroder, H., Prego, I., & Maldonado, S. (2002). Storage reserves and cellular water in mature seeds of Araucaria angustifolia. Botanical Journal of the Linnean Society, 140(3), 273-281. DOI: 10.1046/j.1095-8339.2002.00093.x

Pieruzzi, F. P., Dias, L. L. C., Balbuena, T. S., Santa-Catarina, C., Santos, A. L. W., & Floh, E. I. S. (2011). Polyamines, IAA and ABA during germination in two recalcitrant seeds: Araucaria angustifolia (Gymnosperm) and Ocotea odorifera (Angiosperm). Annals of Botany, 108(2), 337-345. DOI: 10.1093/aob/mcr133

Piriz Carrillo, V., Chaves, A., Fassola, H., & Mugridge, A. (2003). Refrigerated storage of seeds of Araucaria angustifolia (Bert.) O. Kuntze over a period of 24 months. Seed Science and Technology, 31(2), 411-421. DOI: 10.15258/sst.2003.31.2.18

Rajjou, L., Gallardo, K., Debeaujon, I., Vandekerckhove, J., Job, C., & Job, D. (2004). The effect of alpha-amanitin on the Arabidopsis seed proteome highlights the distinct roles of stored and neosynthesized mRNAs during germination. Plant Physiology, 134(4), 1598-1613. DOI: 10.1104/pp.103.036293

Ramos, A., & Souza, G. B. (1991). Utilização das reservas alimenticias de sementes de araucária durante o armazenamento. Boletim de Pesquisa Florestal, 22(23), 21-27.

Rosado, R. M., Ferreira, A. G., Mariath, J. E. A., & Cocucci, A. E. (1994). Amido no megagametófito de araucaria durante a germinação e desenvolvimento do esporófito. Acta Botanica Brasilica, 8(1), 35-43. DOI: 10.1590/S0102-33061994000100004

Statistical Analysis System [SAS]. (2009). User guide - Version 9.2. Cary, NC: SAS Institute Inc.

Shibata, M., Coelho, C. M. M., Araldi, C. G., Adan, N., & Peroni, N. (2016). Physiological and physical quality of local Araucaria angustifolia seed variety. Acta Scientiarum. Agronomy, 38(2), 249-256. DOI: 10.4025/actasciagron.v38i2.27976

Shibata, M., Coelho, C. M. M., & Steiner, N. (2013). Physiological quality of Araucaria angustifolia seeds at different stages of development. Seed Science and Technology, 41(2), 214-224. DOI: 10.15258/sst.2013.41.2.04

Silva, J. P. N., Centeno, D. C., Ribeiro, R. C. L. F., & Barbedo, C. J. (2015). Maturation of seeds of Poincianella pluviosa (Caesalpinoideae). Journal of Seed Science, 37(2), 131-138. DOI:10.1590/2317-1545v37n2146864

Silveira, V., Santa-Catarina, C., Balbuena, T. S., Moraes, F. M. S., Ricart, C. A. O., Sousa, M. V., ... Floh, E. I. S. (2008). Endogenous abscisic acid and protein contents during seed development of Araucaria angustifolia. Biologia Plantarum, 52(1), 101-104. DOI: 10.1007/s10535-008-0018-3

Thomas, P. (2013). Araucaria angustifolia (The IUCN Red List of Threatened Species 2013: e.T32975A2829141). DOI: 10.2305/IUCN.UK.2013-1.RLTS.T32975A2829141.en.

Walters, C. (2015). Orthodoxy, recalcitrance and in-between: describing variation in seed storage characteristics using threshold responses to water loss. Planta, 242(2), 397-406. DOI: 10.1007/s00425-015-2312-6

Yemm, E. W., & Cocking, E. C. (1955). The determination of amino-acids with ninhydrin. Analyst, 80(948), 209-214. DOI: 10.1039/AN9558000209

Publicado
2019-09-05
Como Citar
Araldi, C. G., & Coelho, C. M. M. (2019). Reserve metabolism of stored and germinated Araucaria angustifolia seeds . Acta Scientiarum. Agronomy, 41(1), e42707. https://doi.org/10.4025/actasciagron.v41i1.42707
Seção
Produção Vegetal

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus