Silicon slag increases melon growth and resistance to bacterial fruit blotch

  • Hailson Alves Ferreira Preston Universidade Federal do Rio Grande do Norte
  • Clistenes Williams Araújo do Nascimento Universidade Federal Rural do Pernambuco
  • Welka Preston Universidade do Estado do Rio Grande do Norte
  • Glauber Henrique de Souza Nunes Universidade Federal Rural do Semiárido
  • Francisco Leandro Costa Loureiro Universidade Federal Rural do Semiárido
  • Rosa de Lima Ramos Mariano Universidade Federal Rural do Pernambuco
Palavras-chave: Plant pathology, soil chemistry, plant protection, calcium silicates

Resumo

Melon bacterial fruit blotch (BFB) is the major bacterial melon disease in Northeastern Brazil. We evaluated the effects of applying a silicon (Si) slag on BFB suppressiveness in two melons cultivars as well as in soil chemical attributes and plant growth and nutrition. Slag was incorporated into the soil at concentrations equivalent to 0.00, 0.12, 0.24, 0.47, 0.71, and 1.41 g kg-1 of silicon. Plants were inoculated with Acidovorax citrulli 20 days after emergence. Results showed that amending the soil with Si slag improved the resistance of two melon cultivars against bacterial fruit blotch. Such an effect is probably related not only to the Si uptake by plants but also to changes in soil characteristics and improvement in plant nutrition. Both hybrid cultivars (AF4945 and Medellín) increased biomass, nutrient and Si accumulation as a function of Si doses applied to soil. According to Si concentration and Si to Ca ratio in plant tissue, both cultivars are regarded as intermediary Si-accumulators. We also observed that an intermediate dose of Si (0.71 g kg-1) posed better results on controlling melon bacterial fruit blotch than the highest dose tested

Downloads

Não há dados estatísticos.

Referências

Andrade, C. C. L., Resende, R. S., Rodrigues, F. A., Ferraz, H. G. M., Moreira, W. R., Oliveira, J. R., & Mariano, R. L. R. (2013). Silicon reduces bacterial speck development on tomato leaves. Tropical Plant Pathology, 38(5), 436-442. DOI: 10.1590/S1982-56762013005000021

Anjos, T. V., Tebaldi, N. D., Mota, L. C. B. M., & Coelho, L. (2014). Silicate sources for the control of tomato bacterial spot (Xanthomonas spp.). Summa Phytopathologica, 40(4), 365-367. DOI: 10.1590/0100-5405/2007

Ayana, G., Fininsa, C., Ahmed, S., & Wydra, K. (2011). Effects of soil amendment on bacterial wilt caused by Ralstonia solanacerum and tomato yields in Ethiopia. Journal of Plant Protection Research, 51(1), 72-73. DOI: 10.2478/v10045-011-0013-0

Azevedo, L. A. S. (1997). Manual de quantificação de doenças de plantas. São Paulo, SP: Novartis.

Burdman, S., & Walcott, R. (2012). Acidovorax citrulli: generating basic and applied knowledge to tackle a global threat to the cucurbit industry. Molecular Plant Pathology, 13(8), 805-815. DOI: 10.1111/j.1364-3703.2012.00810.x

Castro, G. S. A., & Crusciol, C. A. C. (2013). Effects of superficial liming and silicate application on soil fertility and crop yield under rotation. Geoderma, 195/196, 234-242. DOI: 10.1016/j.geoderma.2012.12.006

Conselho Nacional do Meio Ambiente [CONAMA]. (2009). Resolution 420. Retrived on Aug. 25, 2018 from http://www2.mma.gov.br/port/conama/legiabre.cfm?codlegi=620

Empresa Brasileira de Pesquisa Agropecuária [EMBRAPA]. (2009). Manual de análises químicas de solos, plantas e fertilizantes (2a. ed.). Brasília, DF: Embrapa Informação Tecnológica.

Ferraz, R. L. S., Magalhães, I. D., Beltrão, N. E. M., Melo, A. S., Brito Neto, J. F., & Rocha, M. S. (2015). Photosynthetic pigments, cell extrusion and relative leaf water content of the castor bean under silicon and salinity. Revista Brasileira de Engenharia Agrícola e Ambiental, 19(9), 841-848. DOI: 10.1590/1807-1929/agriambi.v19n9p841-848

Ferreira, H. A., Nascimento, C. W. A., Datnoff, L. E., Nunes, G. H. S., Preston, W., Souza, E. B., & Mariano, R. L. R. (2015). Effects of silicon on resistance to bacterial fruit blotch and growth of melon. Crop Protection, 78, 277-283. DOI: 10.1016/j.cropro.2015.09.025

Gomes, C. F., Marchetti, M. E., Novelino, J. O., Mauad, M., & Alovisi, A. M. T. (2011). Disponibilidade de silício para a cultura do arroz, em função de fontes, tempo de incubação e classes de solo. Pesquisa Agropecuária Tropical, 41(4), 531-538. DOI: 10.5216/pat.v41i4.10906

Horuz, S., & Aysan, Y. (2018). Biological control of watermelon seedling blight caused by Acidovorax citrulli using antagonistic bacteria from the genera Curtobacterium, Microbacterium and Pseudomonas. Plant Protection Science, 54(3), 138-146. DOI: 10.17221/168/2016-PPS

Instituto Brasileiro de Geografia e Estatística [IBGE]. (2016). Produção agrícola municipal: culturas temporárias e permanentes (Vol. 43). Rio de Janeiro, RJ: IBGE.

Júnior, L. A. Z., Fontes, R. L. F., & Ávila, V. T. (2009). Aplicação do silício para aumentar a resistência do arroz à mancha-parda. Pesquisa Agropecuária Brasileira, 44(2), 203-206. DOI: 10.1590/S0100-204X2009000200013

Korndörfer G. H., Pereira H. S., & Nolla A. (2004). Análise de silício: solo, planta e fertilizante (2nd ed.). Uberlândia, MG: Instituto de Ciências Agrárias, Universidade Federal de Uberlândia.

Ma, J. F., & Yamaji, N. (2015). A cooperative system of silicon transport in plants. Trends in Plant Science, 20(7), 435-42. DOI: 10.1016/j.tplants.2015.04.007

McKinney, H. H. (1923). Influence of soil, temperature and moisture on infection of wheat seedlings by Helminthosporium sativum. Journal of Agricultural Research, 26, 195-217.

Pilon-Smits, E. A. H., Quinn, C. F., Tapken, W., Malagoli, M., & Schiavon, M. (2009). Physiological functions of beneficial elements. Current Opinion in Plant Biology, 12(3), 267-274. DOI: 10.1016/j.pbi.2009.04.009

Pozza, E. A., Pozza, A. A. A., & Botelho, D. M. S. (2015). Silicon in plant disease control. Ceres, 62(3), 323-331. DOI: 10.1590/0034-737X201562030013

Queiroz, D. L., Camargo, J. M. M., Dedecek, R. A., Oliveira, E. B., Zanol, K. M. R., & Melido, R. C. N. (2018). Absorção e translocação de silício em mudas de Eucalyptus camaldulensis. Ciência Florestal, 28(2), 632-640. DOI: 10.5902/1980509832053

Ramos, A. R. P., Santos, R. L., Amaro, A. C. E.; Fumes, L. A. A., Boaro, C. S. F., & Cardoso, A. I. I. (2013). Eficiência do silicato de potássio no controle do oídio e no desenvolvimento de abobrinha de moita. Horticultura Brasileira, 31(3), 432-438. DOI: 10.1590/S0102-05362013000300014

Resende, R. R., Rodrigues, F. A., Soares, J. M., & Casela, C. R. (2009). Influence of silicon on components of resistance to anthracnose in susceptible and resistant sorghum lines. European Journal of Phytopathology, 124, 533-541. DOI: 10.1007/s10658-009-9430-6

Sakr, N. (2016). Silicon control of bacterial and viral diseases in plants. Journal of Plant Protection Research, 56(4), 331-336. DOI: 10.1515/jppr-2016-0052

Santos, G. R., Castro Neto, M. D., Ramos, L. N., Sarmento, R. A., Korndörfer, G. H., & Ignácio, M. (2011). Effect of silicon sources on rice diseases and yield in the State of Tocantins, Brazil. Acta Scientiarum. Agronomy, 33(3), 451-456. DOI: 10.4025/actasciagron.v33i3.6573

Santos, G. R., Rodrigues, A. C., Bonifacio, A., Chagas Junior, A. F., & Tschoeke P. H. (2014). Severidade de antracnose em folhas de sorgo submetido a doses crescentes de silício. Ciência Agronômica, 45(2), 403-408. DOI: 10.1590/S1806-66902014000200023

Schaad, N. W., Sowell Jr., G., Goth, R. W., Colwell, R. R., & Webb, R. E. (1978). Pseudomonas pseudoalcaligenes subsp. citrulli subsp. International Journal of Systematic and Evolutionary Microbiology, 28(1) 117-125. DOI: 10.1099/00207713-28-1-117

Schurt, D. A., Rodrigues, F. A., Reis, R. D., Moreira, W. R., Souza, N. F. A., & Silva, W. A. (2012). Resistência física de bainhas de plantas de arroz supridas com silício e infectadas por Rhizoctonia solani. Tropical Plant Pathology, 37(4), 281-285. DOI: 10.1590/S1982-56762012000400008

Schurt, D. A., Rodrigues, F. A., Colodette, J. L., & Carré-Missio, V. (2013). Efeito do silício nas concentrações de lignina e de açúcares em bainhas de folhas de arroz infectadas por Rhizoctonia solani. Bragantia, 72(4), 360-366. DOI: 10.1590/brag.2013.043

Shaner, G., & Finney, R. E. (1977). The effect of nitrogen fertilization on the expression of slow-mildewing resistance in knox wheat. Phytopathology, 67, 1051-1056. DOI: 10.1094/Phyto-67-1051

Silva, I. T., Rodrigues, F. A., Oliveira, J. R., Pereira, S. C., Andrade, C. C. L., Silveira, P. R., & Conceição, M. M. (2010). Wheat resistance to bacterial leaf streak mediated by silicon. Journal of Phytopathology, 158(4), 253-262. DOI: 10.1111/j.1439-0434.2009.01610.x

Silva, K. M. M., Xavier, A. S., Gama, M. A. S., Lima, N. B., Lyra, M. C. C. P., Mariano R. L. R., & Souza, E. B. (2016). Polyphasic analysis of Acidovorax citrulli strains from northeastern Brazil. Scientia Agricola, 73(3), 252-259. DOI: 10.1590/0103-9016-2015-0088

Sobral, M. F., Nascimento, C. W. A., Cunha, K. P. V., Ferreira, H. A., Silva, A. J., & Silva, F. B. V. (2011). Escória de siderurgia e seus efeitos nos teores de nutrientes e metais pesados em cana-de-açúcar. Revista Brasileira de Engenharia Agrícola e Ambiental, 15(8), 867-872. DOI: 10.1590/S1415-43662011000800015

Soltani, M., Kafi, M., Nezami, A., & Taghiyari, H. R. (2018). Effects of silicon application at nano and micro scales on the growth and nutrient uptake of potato minitubers (Solanum tuberosum var. Agria) in greenhouse conditions. BioNanoScience, 8, 218-228. DOI: 10.1007/s12668-017-0467-2

Souza Filho, A. L., Oliveira, F. H. T., Preston, W., Silva, G. F., & Carvalho, S. L. (2016). Nitrogen and phosphate fertilizer on green corn grown in succession to the melon crop. Horticultura Brasileira, 34(3), 392-397. DOI: 10.1590/S0102-05362016003014

Suthaparan, A., Solhaug, K. A., Stensvand, A., & Gislerød, H. R. (2017). Daily light integral and day light quality: Potentials and pitfalls of nighttime UV treatments on cucumber powdery mildew. Journal of Photochemistry & Photobiology, B: Biology, 175(1), 141-148. DOI: 10.1016/j.jphotobiol.2017.08.041

Tubana, B. S., Babu, T., & Datnoff, L. E. (2016). A Review of silicon in soils and plants and its role in US agriculture: History and future perspectives. Soil Science, 181(9/10), 393-411. DOI: 10.1097/SS.0000000000000179

United States Environmental Protection Agency [USEPA]. (1996). Microwave assisted acid digestion of siliceous and organically based matrices. Method 3052. Retrived on Aug. 22, 2018 from https://19january2017snapshot.epa.gov/sites/production/files/2015-12/documents/3052.pdf

United States Environmental Protection Agency [USEPA]. (2007). Microwave assisted acid digestion of sedments, sludges, soils, and oils. Method 3051A. Retrived on Aug. 22, 2018 from https://www.epa.gov/sites/production/files/2015-12/documents/3051a.pdf

Walcott, R. R., Fessehaie, A., & Castro, A. C. (2004). Differences in pathogenicity between two genetically distinct groups of Acidovorax avenae subsp. citrulli on cucurbit hosts. Journal of Phytopathology, 152(5), 277-285. DOI: 10.1111/j.1439-0434.2004.00841.x

Wang, L., Cai, K., Chen, Y., & Wang, G. (2013). Silicon-mediated tomato resistance against Ralstonia solanacearum is associated with modification of soil microbial community structure and activity. Biological Trace Element Research, 152(2), 275-83. DOI: 10.1007/s12011-013-9611-1

Publicado
2020-08-14
Como Citar
Preston, H. A. F., Nascimento, C. W. A. do, Preston, W., Nunes, G. H. de S., Loureiro, F. L. C., & Mariano, R. de L. R. (2020). Silicon slag increases melon growth and resistance to bacterial fruit blotch. Acta Scientiarum. Agronomy, 43(1), e45075. https://doi.org/10.4025/actasciagron.v43i1.45075
Seção
Fitossanidade

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus