Behavior of strawberry production with growth models: a multivariate approach

  • Maria Inês Diel Universidade Federal de Santa Maria
  • Alessandro Dal'Col Lúcio Universidade Federal de Santa Maria
  • Bruno Giacomini Sari Universidade Federal de Santa Maria
  • Tiago Olivoto Universidade Federal de Santa Maria
  • Marcos Vinicius Marques Pinheiro Universidade Estadual do Maranhão
  • Dionatan Ketzer Krysczum Universidade Federal de Santa Maria
  • Patrícia Jesus de Melo Universidade Federal de Santa Maria
  • Denise Schmidt Universidade Federal de Santa Maria
Palavras-chave: Fragaria x ananassa; fruits mass; substrates; logistic model; principal components.

Resumo

Strawberry is an economically and socially important crop in several regions worldwide. Thus, studies that provide information on topics in strawberry growth are important and must be constantly updated. The aims of this study were to fit a logistic growth model to describe strawberry fruit production and to estimate the partial derivatives of the fitted model in order to estimate and interpret the critical points, in addition to using multivariate analyses. To do this, data on 16 treatments [combinations of two cultivars (Albion and Camarosa), two origins (national and imported), and four mixed organic substrates (70% crushed sugar cane residue + 30% organic compost, 70% crushed sugar cane residue + 30% commercial substrate, 70% burnt rice husk + 30% organic compost, and 70% burnt rice husk + 30% commercial substrate)] conducted in a randomized complete block design (RCBD) with four replicates were used. A logistic model was fitted to the accumulated fruit production stratified by treatment and replication. Partial derivatives related to the accumulated thermal sum were estimated in order to quantify the critical points of the model. Subsequently, a principal component analysis was performed. The results show that the use of growth models substantially increases the inferences that can be made about crop growth, and the multivariate analysis summarizes this information, simplifying its interpretation. Approaches such as those carried out in this study are still rarely used, but, compared to simpler models, they increase the amount of inferences that can be made and provide greater elucidation of the results.

Downloads

Não há dados estatísticos.

Referências

Alvares, C. A., Stape, J. L., Sentelhas, P. C., De Moraes Gonçalves, J. L., & Sparovek, G. (2013). Koppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711-728. DOI: 10.1127/0941-2948/2013/0507

Bates, D. M., & Watts, D. G. (1988). Nonlinear regression analysis and its applications (2nd ed., v. 85). New York, NY: John Wiley and Sons Inc. DOI: 10.1002/9780470316757

Baty, F., Ritz, C., Charles, S., Brutsche, M., Flandrois, J.-P., & Delignette-Muller, M.-L. (2015). A toolbox for nonlinear regression in R : The package nlstools. Journal of Statistical Software, 66(5), 1-21. DOI: 10.18637/jss.v066.i05

Diel, M. I., Pinheiro, M. V. M., Cocco, C., Fontana, D. C., Caron, B. O., Paula, G. M., … Schmidt, D. (2017a). Phyllochron and phenology of strawberry cultivars from different origins cultivated in organic substracts. Scientia Horticulturae, 220, 226-232. DOI: 10.1016/j.scienta.2017.03.053

Diel, M. I., Pinheiro, M. V. M., Cocco, C., Thiesen, L. A., Altíssimo, B. S., Fontana, D. C., … Testa, V. (2017b). Artificial vernalization in strawberry plants: phyllochron, production and quality. Australian Journal of Crop Scince, 11(10), 1315-1319. DOI: 10.21475/ajcs.17.11.10.pne603

Diel, M. I., Pinheiro, M. V. M., Thiesen, L. A., Altíssimo, B. S., Holz, E., & Schmidt, D. (2018). Cultivation of strawberry in substrate: Productivity and fruit quality are affected by the cultivar origin and substrates. Ciência e Agrotecnologia, 42(3), 229-239. DOI: 10.1590/1413-70542018423003518

Diel, M. I., Sari, B. G., Krysczun, D. K., Pinheiro, M.,V. M., Meira, D., … Schmidt, D. (2019). Nonlinear regression for description of strawberry (Fragaria x ananassa) production. The Journal of Horticultural Science and Biotechnology, 94(2), 259-273. DOI: 0.1080/14620316.2018.1472045

Gonçalves, M. A., Vignolo, G. K., Antunes, L. E. C., & Reisser Junior, C. (2016). Produção de morango fora do solo (Documentos, 410). Pelotas, RS: Embrapa Clima Temperado.

Hongyu, K., Jorge, G., & Junior, D. O. (2015). Análise de componentes principais: resumo teórico, aplicação e interpretação. Engineering and Science, 1(5), 83-90. DOI: 10.18607/ES20165053

Le, S., Josse, J., & Husson, F. (2008). FactoMineR: An R package for multivariate analysis. Journal of Statistical Software, 25(1), 1-18. DOI: 10.18637/jss.v025.i01

Lúcio, A. D., Sari, B. G., Rodrigues, M., Bevilaqua, L. M., Voss, H. M. G., Copetti, D., & Faé, M. (2016). Modelos não-lineares para a estimativa da produção de tomate do tipo cereja. Ciência Rural, 46(2), 233-241. DOI: 10.1590/0103-8478cr20150067

Mendonça, H. F. C., Calvete, E. O., Nienow, A. A., Costa, R. C., Zerbielli, L., & Bonafé, M. (2012). Phyllochron estimation in intercropped strawberry and monocrop systems in a protected environment. Revista Brasileira de Fruticultura, 34(1), 15-23. DOI: 10.1590/S0100-29452012000100005

Mérelle, S. Y. M., Kleiboer, A. M., Schotanus, M., Cluitmans, T. L. M., Waardenburg, C. M., Kramer, D., … van Rooij, A. J. (2017). Which health-related problems are associated with problematic video-gaming or social media use in adolescents? A large-scale cross-sectional study. Clinical Neuropsychiatry, 14(1), 11-19. DOI: 10.1016/j.jclepro.2016.03.175

Milani, M., Lopes, S. J., Bellé, R. A., Backes, F. A. A. L., Milani, M., Lopes, S. J., … Backes, F. A. A. L. (2016). Logistic growth models of China pinks, cultivated on seven substrates, as a function of degree days. Ciência Rural, 46(11), 1924-1931. DOI: 10.1590/0103-8478cr20150839

Mischan, M. M., Pinho, S. Z., & Carvalho, L. R. (2011). Determination of a point sufficiently close to the asymptote in nonlinear growth functions. Scientia Agricola, 68(1), 109-114. DOI: 10.1590/S0103-90162011000100016

Morris, J., Else, M. A., El Chami, D., Daccache, A., Rey, D., & Knox, J. W. (2017). Essential irrigation and the economics of strawberries in a temperate climate. Agricultural Water Management, 194, 90-99. DOI: 10.1016/j.agwat.2017.09.004

Rinaldi, S., De Lucia, B., Salvati, L., & Rea, E. (2014). Understanding complexity in the response of ornamental rosemary to different substrates: A multivariate analysis. Scientia Horticulturae, 176, 218-224. DOI: 10.1016/J.SCIENTA.2014.07.011

Rosa, H. T., Walter, L. C., Streck, N. A., Andriolo, J. L., Silva, M. R., & Langner, J. A. (2011). Base temperature for leaf appearance and phyllochron of selected strawberry cultivars in a subtropical environment. Bragantia, 70(4), 939-945. DOI: 10.1590/S0006-87052011000400029

Sari, B.G., Olivoto, T., Diel, M. I., Krysczun, D. K., & Lúcio, A. D. (2018). Nonlinear modeling for analyzing data from multiple harvest crops. Agronomy Journal, 110(6), 1-12. DOI: 10.2134/agronj2018.05.0307

Sari, B. G., Lúcio, A. D., Santana, C. S., & Savian, T. V. (2019a). Describing tomato plant production using growth models. Scientia Horticulturae, 246, 146-154. DOI: 10.1016/J.SCIENTA.2018.10.044

Sari, B. G., Lúcio, A. D., Souza Santana, C., Olivoto, T., Diel, M. I., & Krysczun, D. K. (2019b). Nonlinear growth models: An alternative to ANOVA in tomato trials evaluation. European Journal of Agronomy, 104, 21-36. DOI: 10.1016/J.EJA.2018.12.012

Sønsteby, A., Opstad, N., & Heide, O. M. (2013). Environmental manipulation for establishing high yield potential of strawberry forcing plants. Scientia Horticulturae, 157, 65-73. DOI: 10.1016/j.scienta.2013.04.014

Vargas, T. O., Alves, E. P., Abboud, A. C., Leal, M. A., Carmo, M. G., Vargas, T. O., … Carmo, M. G. (2015). Diversidade genética em acessos de tomateiro heirloom. Horticultura Brasileira, 33(2), 174-180. DOI: 10.1590/S0102-053620150000200007

Wang, D., Gabriel, M. Z., Legard, D., & Sjulin, T. (2016). Characteristics of growing media mixes and application for open-field production of strawberry (Fragaria ananassa). Scientia Horticulturae, 198, 294-303. DOI: 10.1016/j.scienta.2015.11.023

Wang, T., Zhu, B., & Xia, L. (2012). Effects of contour hedgerow intercropping on nutrient losses from the sloping farmland in the Three Gorges Area, China. Journal of Mountain Science, 9(1), 105-114. DOI: 10.1007/s11629-012-2197-9

Publicado
2020-11-05
Como Citar
Diel, M. I., Lúcio, A. D., Sari, B. G., Olivoto, T., Pinheiro, M. V. M., Krysczum, D. K., Melo, P. J. de, & Schmidt, D. (2020). Behavior of strawberry production with growth models: a multivariate approach. Acta Scientiarum. Agronomy, 43(1), e47812. https://doi.org/10.4025/actasciagron.v43i1.47812
Seção
Biometria, Modelagem e Estatística

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus