Behavior of strawberry production with growth models: a multivariate approach
Resumo
Strawberry is an economically and socially important crop in several regions worldwide. Thus, studies that provide information on topics in strawberry growth are important and must be constantly updated. The aims of this study were to fit a logistic growth model to describe strawberry fruit production and to estimate the partial derivatives of the fitted model in order to estimate and interpret the critical points, in addition to using multivariate analyses. To do this, data on 16 treatments [combinations of two cultivars (Albion and Camarosa), two origins (national and imported), and four mixed organic substrates (70% crushed sugar cane residue + 30% organic compost, 70% crushed sugar cane residue + 30% commercial substrate, 70% burnt rice husk + 30% organic compost, and 70% burnt rice husk + 30% commercial substrate)] conducted in a randomized complete block design (RCBD) with four replicates were used. A logistic model was fitted to the accumulated fruit production stratified by treatment and replication. Partial derivatives related to the accumulated thermal sum were estimated in order to quantify the critical points of the model. Subsequently, a principal component analysis was performed. The results show that the use of growth models substantially increases the inferences that can be made about crop growth, and the multivariate analysis summarizes this information, simplifying its interpretation. Approaches such as those carried out in this study are still rarely used, but, compared to simpler models, they increase the amount of inferences that can be made and provide greater elucidation of the results.
Downloads
Referências
Alvares, C. A., Stape, J. L., Sentelhas, P. C., De Moraes Gonçalves, J. L., & Sparovek, G. (2013). Koppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711-728. DOI: 10.1127/0941-2948/2013/0507
Bates, D. M., & Watts, D. G. (1988). Nonlinear regression analysis and its applications (2nd ed., v. 85). New York, NY: John Wiley and Sons Inc. DOI: 10.1002/9780470316757
Baty, F., Ritz, C., Charles, S., Brutsche, M., Flandrois, J.-P., & Delignette-Muller, M.-L. (2015). A toolbox for nonlinear regression in R : The package nlstools. Journal of Statistical Software, 66(5), 1-21. DOI: 10.18637/jss.v066.i05
Diel, M. I., Pinheiro, M. V. M., Cocco, C., Fontana, D. C., Caron, B. O., Paula, G. M., … Schmidt, D. (2017a). Phyllochron and phenology of strawberry cultivars from different origins cultivated in organic substracts. Scientia Horticulturae, 220, 226-232. DOI: 10.1016/j.scienta.2017.03.053
Diel, M. I., Pinheiro, M. V. M., Cocco, C., Thiesen, L. A., Altíssimo, B. S., Fontana, D. C., … Testa, V. (2017b). Artificial vernalization in strawberry plants: phyllochron, production and quality. Australian Journal of Crop Scince, 11(10), 1315-1319. DOI: 10.21475/ajcs.17.11.10.pne603
Diel, M. I., Pinheiro, M. V. M., Thiesen, L. A., Altíssimo, B. S., Holz, E., & Schmidt, D. (2018). Cultivation of strawberry in substrate: Productivity and fruit quality are affected by the cultivar origin and substrates. Ciência e Agrotecnologia, 42(3), 229-239. DOI: 10.1590/1413-70542018423003518
Diel, M. I., Sari, B. G., Krysczun, D. K., Pinheiro, M.,V. M., Meira, D., … Schmidt, D. (2019). Nonlinear regression for description of strawberry (Fragaria x ananassa) production. The Journal of Horticultural Science and Biotechnology, 94(2), 259-273. DOI: 0.1080/14620316.2018.1472045
Gonçalves, M. A., Vignolo, G. K., Antunes, L. E. C., & Reisser Junior, C. (2016). Produção de morango fora do solo (Documentos, 410). Pelotas, RS: Embrapa Clima Temperado.
Hongyu, K., Jorge, G., & Junior, D. O. (2015). Análise de componentes principais: resumo teórico, aplicação e interpretação. Engineering and Science, 1(5), 83-90. DOI: 10.18607/ES20165053
Le, S., Josse, J., & Husson, F. (2008). FactoMineR: An R package for multivariate analysis. Journal of Statistical Software, 25(1), 1-18. DOI: 10.18637/jss.v025.i01
Lúcio, A. D., Sari, B. G., Rodrigues, M., Bevilaqua, L. M., Voss, H. M. G., Copetti, D., & Faé, M. (2016). Modelos não-lineares para a estimativa da produção de tomate do tipo cereja. Ciência Rural, 46(2), 233-241. DOI: 10.1590/0103-8478cr20150067
Mendonça, H. F. C., Calvete, E. O., Nienow, A. A., Costa, R. C., Zerbielli, L., & Bonafé, M. (2012). Phyllochron estimation in intercropped strawberry and monocrop systems in a protected environment. Revista Brasileira de Fruticultura, 34(1), 15-23. DOI: 10.1590/S0100-29452012000100005
Mérelle, S. Y. M., Kleiboer, A. M., Schotanus, M., Cluitmans, T. L. M., Waardenburg, C. M., Kramer, D., … van Rooij, A. J. (2017). Which health-related problems are associated with problematic video-gaming or social media use in adolescents? A large-scale cross-sectional study. Clinical Neuropsychiatry, 14(1), 11-19. DOI: 10.1016/j.jclepro.2016.03.175
Milani, M., Lopes, S. J., Bellé, R. A., Backes, F. A. A. L., Milani, M., Lopes, S. J., … Backes, F. A. A. L. (2016). Logistic growth models of China pinks, cultivated on seven substrates, as a function of degree days. Ciência Rural, 46(11), 1924-1931. DOI: 10.1590/0103-8478cr20150839
Mischan, M. M., Pinho, S. Z., & Carvalho, L. R. (2011). Determination of a point sufficiently close to the asymptote in nonlinear growth functions. Scientia Agricola, 68(1), 109-114. DOI: 10.1590/S0103-90162011000100016
Morris, J., Else, M. A., El Chami, D., Daccache, A., Rey, D., & Knox, J. W. (2017). Essential irrigation and the economics of strawberries in a temperate climate. Agricultural Water Management, 194, 90-99. DOI: 10.1016/j.agwat.2017.09.004
Rinaldi, S., De Lucia, B., Salvati, L., & Rea, E. (2014). Understanding complexity in the response of ornamental rosemary to different substrates: A multivariate analysis. Scientia Horticulturae, 176, 218-224. DOI: 10.1016/J.SCIENTA.2014.07.011
Rosa, H. T., Walter, L. C., Streck, N. A., Andriolo, J. L., Silva, M. R., & Langner, J. A. (2011). Base temperature for leaf appearance and phyllochron of selected strawberry cultivars in a subtropical environment. Bragantia, 70(4), 939-945. DOI: 10.1590/S0006-87052011000400029
Sari, B.G., Olivoto, T., Diel, M. I., Krysczun, D. K., & Lúcio, A. D. (2018). Nonlinear modeling for analyzing data from multiple harvest crops. Agronomy Journal, 110(6), 1-12. DOI: 10.2134/agronj2018.05.0307
Sari, B. G., Lúcio, A. D., Santana, C. S., & Savian, T. V. (2019a). Describing tomato plant production using growth models. Scientia Horticulturae, 246, 146-154. DOI: 10.1016/J.SCIENTA.2018.10.044
Sari, B. G., Lúcio, A. D., Souza Santana, C., Olivoto, T., Diel, M. I., & Krysczun, D. K. (2019b). Nonlinear growth models: An alternative to ANOVA in tomato trials evaluation. European Journal of Agronomy, 104, 21-36. DOI: 10.1016/J.EJA.2018.12.012
Sønsteby, A., Opstad, N., & Heide, O. M. (2013). Environmental manipulation for establishing high yield potential of strawberry forcing plants. Scientia Horticulturae, 157, 65-73. DOI: 10.1016/j.scienta.2013.04.014
Vargas, T. O., Alves, E. P., Abboud, A. C., Leal, M. A., Carmo, M. G., Vargas, T. O., … Carmo, M. G. (2015). Diversidade genética em acessos de tomateiro heirloom. Horticultura Brasileira, 33(2), 174-180. DOI: 10.1590/S0102-053620150000200007
Wang, D., Gabriel, M. Z., Legard, D., & Sjulin, T. (2016). Characteristics of growing media mixes and application for open-field production of strawberry (Fragaria ananassa). Scientia Horticulturae, 198, 294-303. DOI: 10.1016/j.scienta.2015.11.023
Wang, T., Zhu, B., & Xia, L. (2012). Effects of contour hedgerow intercropping on nutrient losses from the sloping farmland in the Three Gorges Area, China. Journal of Mountain Science, 9(1), 105-114. DOI: 10.1007/s11629-012-2197-9
DECLARAÇÃO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.