Above and belowground carbon stock in a tropical forest in Brazil

Palavras-chave: carbon sink; biomass; spatial pattern; secondary forest; soil.

Resumo

An increase in atmospheric CO2 levels and global climate changes have led to an increased focus on CO2 capture mechanisms. The in situ quantification and spatial patterns of forest carbon stocks can provide a better picture of the carbon cycle and a deeper understanding of the functions and services of forest ecosystems. This study aimed to determine the aboveground (tree trunks) and belowground (soil and fine roots, at four depths) carbon stocks in a tropical forest in Brazil and to evaluate the spatial patterns of carbon in the three different compartments and in the total stock. Census data from a semideciduous seasonal forest were used to estimate the aboveground carbon stock. The carbon stocks of soil and fine roots were sampled in 52 plots at depths of 0-20, 20-40, 40-60, and 60-80 cm, combined with the measured bulk density. The total estimated carbon stock was 267.52 Mg ha-1, of which 35.23% was in aboveground biomass, 63.22% in soil, and 1.54% in roots. In the soil, a spatial pattern of the carbon stock was repeated at all depths analyzed, with a reduction in the amount of carbon as the depth increased. The carbon stock of the trees followed the same spatial pattern as the soil, indicating a relationship between these variables. In the fine roots, the carbon stock decreased with increasing depth, but the spatial gradient did not follow the same pattern as the soil and trees, which indicated that the root carbon stock was most likely influenced by other factors.

Downloads

Não há dados estatísticos.

Referências

Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves, J. L. M., & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711-728. DOI: 10.1127/0941-2948/2013/0507

Amaral, L. P., Ferreira, R. A., Watzlawick, L. F., & Genú, A. M. (2010). Análise da distribuição espacial de biomassa e carbono arbóreo acima do solo em Floresta Ombrófila Mista. Ambiência, 6(Ed. Especial), 103-114.

Asner, G. P., & Mascaro, J. (2014). Mapping tropical forest carbon: Calibrating plot estimates to a simple LiDAR metric. Remote Sensing of Environment, 140, 614-624. DOI: 10.1016/j.rse.2013.09.023

Baker III, T. T., Conner, W. H., Lockaby, B. G., Stanturf, J., & Burke, M. K. (2001). Fine Root Productivity and Dynamics on a Forested Floodplain in South Carolina. Soil Science Society of America Journal, 65, 545-556. DOI: 10.2136/sssaj2002.6710

Balbinot, R., Shumacher, M. V., Watzlawick, L. F., & Sanquetta, C. R. (2003). Inventário do carbono orgânico em um plantio de Pinus taeda aos 5 anos de idade no Rio Grande do Sul. Revista de Ciências Exatas e Naturais, 5(1), 59-68.

Bhattacharya, S. S., Kim, K. H., Das, S., Uchimiya, M., Jeon, B. H., Kwon, E., & Szulejko, J. E. (2016). A review on the role of organic inputs in maintaining the soil carbon pool of the terrestrial ecosystem. Journal of Environmental Management, 167, 214-227. DOI: 10.1016/j.jenvman.2015.09.042

Cambardella, C. A., Moorman, T. B., Novak, J. M., Parkin, T. B., Karlen, D. L., Turco, R. F., & Konopka, A. E. (1994). Field-Scale Variability of Soil Properties in Central Iowa Soils. Soil Science Society of America Journal, 58(2), 1501-1511. DOI: 10.2136/sssaj1994.03615995005800050033x

Carvalho, S. P. C., Mendonça, A. R., Lima, M. P., & Calegario, N. (2010). Different strategies to estimate the commercial volume of Anadenanthera colubrina (Vell.) Brenan. Cerne, 16(3), 399-406. DOI: 10.1590/S0104-77602010000300016

Cerri, C. E. P., Bernoux, M., Chaplot, V., Volkoff, B., Victoria, R. L., Melillo, J. M., … Cerri, C. C. (2004). Assessment of soil property spatial variation in an Amazon pasture: Basis for selecting an agronomic experimental area. Geoderma, 123(1-2), 51-68. DOI: 10.1016/j.geoderma.2004.01.027

Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M. S., Delitti, W. B. C., … Vieilledent, G. (2014). Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 20(10), 3177-3190. DOI: 10.1111/gcb.12629

Chaves, L. H. G., & Farias, C. H. A. (2008). Variabilidade espacial do estoque de carbono nos Tabuleiros Costeiros da Paraíba: Solo cultivado com cana-de-açúcar. Revista Brasileira de Ciências Agrárias (Agrária), 3(1), 20-25. DOI: 10.5039/agraria.v3i1a235

Correa, J., van der Hoff, R., & Rajão, R. (2019). Amazon Fund 10 Years Later: Lessons from the World’s Largest REDD+ Program. Forests, 10(3), 1-20. DOI: 10.3390/f10030272

Cressie, N. A. C. (1993). Statistics for spatial data. New York, NY: John Wiley.

Crowther, T. W., Todd-Brown, K. E. O., Rowe, C. W., Wieder, W. R., Carey, J. C., MacHmuller, M. B., … Bradford, M. A. (2016). Quantifying global soil carbon losses in response to warming. Nature, 540(7631), 104-108. DOI: 10.1038/nature20150

Dantas, D., Souza, M. J., Vieira, A., Oliveira, M., Pereira, I., Machado, E., … Rocha, W. (2018). Soil influences on tree species distribution in a rupestrian cerrado area. Floresta e Ambiente, 25(4). DOI: 10.1590/2179-8087.060517

Dixon, R. K., Brown, S., Houghton, R. A., Solomon, A. M., Trexler, M. C., & Wisniewski. (1994). Carbon Pools and Flux of Global Forest Ecosystems. Science, 263, 185-190.

Djomo, A. N., Knohl, A., & Gravenhorst, G. (2011). Estimations of total ecosystem carbon pools distribution and carbon biomass current annual increment of a moist tropical forest. Forest Ecology and Management, 261(8), 1448-1459. DOI: 10.1016/j.foreco.2011.01.031

Don, A., Schumacher, J., & Freibauer, A. (2010). Impact of tropical land use change on soil organic carbon stocks - a meta-analysis. Global Change Biology, 17(4), 1658-1670. DOI: 10.1111/j.1365- 2486.2010.02336.x

Duncanson, L., Armston, J., Disney, M., Avitabile, V., Barbier, N., Calders, K., … Williams, M. (2019). The importance of consistent global forest aboveground biomass product validation. Surveys in Geophysics, 40, 979-999. DOI: 10.1007/s10712-019-09538-8

Fan, H., Wu, J., Liu, W., Yuan, Y., Hu, L., & Cai, Q. (2015). Linkages of plant and soil C:N:P stoichiometry and their relationships to forest growth in subtropical plantations. Plant and Soil, 392(1-2), 127-138. DOI: 10.1007/s11104-015-2444-2

Figueiredo, L. T. M., Soares, C. P. B., Sousa, A. L., Leite, H. G., & Silva, G. F. (2015). Dinâmica do estoque de carbono em fuste de árvores de uma floresta estacional semidecidual. Cerne, 21(1), 161-167. DOI: 10.1590/01047760201521011529

Franzluebbers, A. J. (2002). Soil organic matter stratification ratio as an indicator of soil quality. Soil & Tillage Research, 66(2), 95-106. DOI: 10.1016/S0167-1987(02)00018-1

Gibbon, A., Silman, M. R., Malhi, Y., Fisher, J. B., Meir, P., Zimmermann, M., … Garcia, K. C. (2010). Ecosystem carbon storage across the grassland-forest transition in the high Andes of Manu National Park, Peru. Ecosystems, 13(7), 1097-1111. DOI: 10.1007/s10021-010-9376-8

Haag, H. P. (1985). Ciclagem de nutrientes em florestas tropicais. Campinas, SP: Fundação Cargill.

Hendrick, R. L., & Pregitzer, K. S. (1996). Temporal and depth-related patterns of fine root dynamics in Northern Hardwood Forests. Journal of Ecology, 84(2), 167-176.

Hossain, M. F., Chen, W., & Zhang, Y. (2015). Bulk density of mineral and organic soils in the Canada’s arctic and sub-arctic. Information Processing in Agriculture, 2(3-4), 183-190. DOI: 10.1016/j.inpa.2015.09.001

Jaloviar, P., Bakošová, L., Kucbel, S., & Vencurik, J. (2009). Quantity and distribution of fine root biomass in the intermediate stage of beech virgin forest badínsky prales. Journal of Forest Science, 55(11), 502-510.

Jobbagy, E. G., & Jackson, R. B. (2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 10(2), 423-436. DOI: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2

King, G. M. (2011). Enhancing soil carbon storage for carbon remediation: Potential contributions and constraints by microbes. Trends in Microbiology, 19(2), 75-84. DOI: 10.1016/j.tim.2010.11.006

Laclau, J., Toutain, F., M’Bou, A. T., Arnaud, M., Joffre, R., & Ranger, J. (2004). The function of the superficial root mat in the biogeochemical cycles of nutrients in Congolese eucalyptus plantations. Annals of Botany, 93(3), 249-261. DOI: 10.1093/aob/mch035

Mafra, Á. L., Guedes, S. F. F., Klauberg Filho, O., Santos, J. C. P., Almeida, J. A., & Dalla Rosa, J. (2008). Carbono orgânico e atributos químicos do solo em áreas florestais. Revista Árvore, 32(2), 217-224. DOI: 10.1590/S0100-67622008000200004

Marques, R. R. P. V, Terra, M. C. N. S., Mantovani, V. A., Rodrigues, A. F., Pereira, G. A., Silva, R. A., & Mello, C. R. (2019). Rainfall water quality under different forest stands. Cerne, 25(1), 8-17. DOI: 10.1590/01047760201925012581

Mello, J. M., Diniz, F. S., Oliveira, A. D., Mello, C. R., Scolforo, J. R. S., & Acerbi Junior, F. W. (2009). Continuidade espacial para características dendrométricas (número de fustes e volume) em plantios de Eucalyptus grandis. Revista Árvore, 33(1), 185-194. DOI: 10.1590/S0100-67622009000100020

Moore, S., Adu-Bredu, S., Duah-Gyamfi, A., Addo-Danso, S. D., Ibrahim, F., Mbou, A. T., … Malhi, Y. (2018). Forest biomass, productivity and carbon cycling along a rainfall gradient in West Africa. Global Change Biology, 24(2), e496-e510. DOI: 10.1111/gcb.13907

Mora, F., Jaramillo, V. J., Bhaskar, R., Gavito, M., Siddique, I., Byrnes, J. E. K., & Balvanera, P. (2018). Carbon accumulation in neotropical dry secondary forests: The roles of forest age and tree dominance and diversity. Ecosystems, 21(3), 536-550. DOI: 10.1007/s10021-017-0168-2

Morais, V. A., Santos, C. A., Mello, J. M., Dadid, H. C., Araújo, E. J. G., & Scolforo, J. R. S. (2017). Distribuição espacial e vertical do carbono em serapilheira e subsolo em vegetação do cerrado brasileiro. Cerne, 23(1), 43-52. DOI: 10.1590/01047760201723012247

Mou, P., Jones, R. H., Mitchell, R. J., & Zutter, B. (1995). Spatial distribution of roots in sweetgum and loblolly pine monocultures and relations with above-ground biomass and soil nutrients. Functional Ecology, 9(4), 689-699.

Navarrete-Segueda, A., Martínez-Ramos, M., Ibarra-Manríquez, G., Vázquez-Selem, L., & Siebe, C. (2018). Variation of main terrestrial carbon stocks at the landscape-scale are shaped by soil in a tropical rainforest. Geoderma, 313, 57-68. DOI: 10.1016/J.GEODERMA.2017.10.023

Ngo, K. M., Turner, B. L., Muller-Landau, H. C., Davies, S. J., Larjavaara, M., Nik Hassan, N. F. bin, & Lum, S. (2013). Carbon stocks in primary and secondary tropical forests in Singapore. Forest Ecology and Management, 296, 81-89. DOI: 10.1016/j.foreco.2013.02.004

Novaes Filho, J. P., Couto, E. G., Oliveira, V. A., Johnson, M. S., Lehmann, J., & Riha, S. S. (2007). Variabilidade espacial de atributos físicos de Solo usada na identificação de classes pedológicas de microbacias na Amazônia meridional. Revista Brasileira de Ciência do Solo, 31(1), 91-100. DOI: 10.1590/S0100-06832007000100010

Oliveira, M. N. S., Mercadante-Simões, M. O., Ribeiro, L. M., Lopes, P. S. N., Gusmão, E., & Dias, B. A. S. (2005). Efeitos alelopáticos de seis espécies arbóreas da família Fabaceae. Unimontes Científica, 7(2), 121-128.

Paiva, A. O., & Faria, G. E. (2007). Estoque de carbono do solo sob cerrado sensu stricto no Distrito Federal, Brasil. Revista Trópica - Ciências e Biológicas, 1(1), 59-65. DOI: 10.1590/S0100-67622011000300015

Parras-Alcántara, L., Lozano-García, B., & Galán-Espejo, A. (2015). Soil organic carbon along an altitudinal gradient in the Despenaperros Natural Park, southern Spain. Solid Earth, 6(1), 125-134. DOI: 10.5194/se-6-125-2015

Powers, J. S., Corre, M. D., Twine, T. E., & Veldkamp, E. (2011). Geographic bias of field observations of soil carbon stocks with tropical land-use changes precludes spatial extrapolation. Proceedings of the National Academy of Sciences, 108(15), 6318-6322. DOI: 10.1073/pnas.1016774108

R Development Core Team. (2018). R: a language and environment for statistical computing. Vienna, AU: R Foundation for Statistical Computing.

Réjou-Méchain, M., Tanguy, A., Piponiot, C., Chave, J., & Hérault, B. (2017). biomass: an r package for estimating above-ground biomass and its uncertainty in tropical forests. Methods in Ecology and Evolution, 8(9), 1163-1167. DOI: 10.1111/2041-210X.12753

Ribeiro Júnior, P. J., & Diggle, P. J. (2001). GeoR: a package for geostatistical analysis. R News, 1(2), 15-18.

Ribeiro, S. C., Jaconive, L. A. G., Soares, C. P. B., Martins, S. V., Nardelli, A. M. B., & Souza, A. L. (2009). Quantificação de biomassa e estimativa de estoque de carbono em uma floresta madura no município de Viçosa, Minas Gerais. Árvore, 33(5), 917-926. DOI: 10.1590/S0100-67622009000500014

Santos, M. C. N. S., Mello, J. M., Mello, C. R., & Ávila, L. F. (2013). Spatial continuity of soil attributes in an atlantic forest remnant in the Mantiqueira range, MG. Ciência e Agrotecnologia, 37(1), 68-77. DOI: 10.1590/S1413-70542013000100008

Shukla, G., & Chakravarty, S. (2018). Biomass, primary nutrient and carbon stock in a Sub-Himalayan Forest of West Bengal, India. Ournal of Forest and Environmental Science, 34(1), 12-23. DOI: 10.7747/JFES.2018.34.1.12

Terra, M. C. N. S., Mello, C. R., Mello, J. M., Oliveira, V. A., Nunes, M. H., Silva, V. O., … Alves, G. J. (2018). Stemflow in a neotropical forest remnant: vegetative determinants, spatial distribution and correlation with soil moisture. Trees, 32(1), 323-335. DOI: 10.1007/s00468-017-1634-3

Terra, M. C. N. S., Mello, J. M., & Mello, C. R. (2015). Spatial relationship of vegetation carbon stock and soil organic matter at Serra da Mantiqueira. Floresta e Ambiente, 22(4), 446-455. DOI: 10.1590/2179-8087.059713

Thomas, S. C., & Martin, A. R. (2012). Carbon content of tree tissues: A synthesis. Forests, 3(2), 332-352. DOI: 10.3390/f3020332

van der Sande, M. T., Poorter, L., Kooistra, L., Balvanera, P., Thonicke, K., Thompson, J., … Peña-Claros, M. (2017). Biodiversity in species, traits, and structure determines carbon stocks and uptake in tropical forests. Biotropica, 49(5), 593-603. DOI: 10.1111/btp.12453

Veldkamp, E. (1994). Organic carbon turnover in three tropical soils under pasture after deforestation. Soil Science Society of America Journal, 58(1), 175-180. DOI: 10.2136/sssaj1994.03615995005800010025x

Watson, R. T. (2001). Climate change 2001: synthesis report: third assessment report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.

Webster, R., & Oliver, M. (2007). Geostatistics for environmental scientists (2nd ed.). Chichester, UK: John Wiley.

Wink, C., Lange, A., Araújo, K. Z., Almeida, A. P. S., Behling, M., & Wruck, F. J. (2018). Biomassa e nutrientes de eucalipto cultivado em sistema agrossilvipastoril. Nativa, 6, 754-762. DOI: 10.31413/nativa.v6i0.5987

Publicado
2020-11-05
Como Citar
Dantas, D., Terra, M. de C. N. S., Pinto, L. O. R., Calegario, N., & Maciel, S. M. (2020). Above and belowground carbon stock in a tropical forest in Brazil. Acta Scientiarum. Agronomy, 43(1), e48276. https://doi.org/10.4025/actasciagron.v43i1.48276
Seção
Produção Vegetal

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus