A new local stochastic method for predicting data with spatial heterogeneity

  • Anderson Rodrigo da Silva Instituto Federal Goiano http://orcid.org/0000-0003-2518-542X
  • Ana Paula Alencastro Silva Instituto Federal Goiano
  • Lauro Joaquim Tiago Neto Instituto Federal Goiano
Palavras-chave: moving window kriging; spatial prediction; soil nematodes.

Resumo

Spatial data (e.g., phytopathogenic data) do not always meet assumptions such as stationarity, isotropy and Gaussian distribution, thereby requiring complex spatial methods and models. Some deterministic assumption-free methods such as the inverse distance weighting can also be applied to predict spatial data, but their output is limited for graphical solutions (mapping). We adapted a computer-based prediction method called Circular Variable Radius Moving Window (CVRMW) that is based on two others: moving window kriging (MWK) and inverse squared-distance weighting (ISDW). The algorithm is developed to meet an objective function that minimizes the index of variation of the spatial observations inside the moving window. A code in R language is presented and thoroughly described. The outputs include the range of the spatial dependence as the radius calculated at every target location and the standard error of the predicted values, mapped to provide a useful tool for spatial exploratory analysis. The method does not make any assumptions about the spatial process, and it is an alternative for dealing with spatial heterogeneity.

Downloads

Não há dados estatísticos.

Referências

Baillod, A. B., Tscharntke, T., Clough, Y., & Batáry, P. (2017). Landscape-scale interactions of spatial and temporal cropland heterogeneity drive biological control of cereal aphids. Journal of Applied Ecology, 54(6), 1804-1813. DOI: 10.1111/1365-2664.12910

Bertrand, C., Burel, F., & Baudry, J. (2016). Spatial and temporal heterogeneity of the crop mosaic influences carabid beetles in agricultural landscapes. Landscape Ecology, 31(2), 451-466. DOI: 10.1007/s10980-015-0259-4

Cattle, J. A., McBratney, A. B., & Minasny, B. (2002). Kriging methods evaluation for assessing the spatial distribution of urban soil lead contamination. Journal of Environmental Quality, 31(5), 1576-1588. DOI: 10.2134/jeq2002.1576

Ching, J., & Lin, C. J. (2014). Probability distribution for mobilized shear strengths of saturated undrained clays modeled by 2-D Stationary Gaussian Random Field-A 1-D stochastic process view. Journal of Mechanics, 30(3), 229-239. DOI: 10.1017/jmech.2014.9

Demšar, U., & Harris, P. (2011). Visual comparison of Moving Window Kriging Models. Cartographica, 46(4), 211-226. DOI: 10.3138/carto.46.4.211

Diggle, P. J., Tawn, J. A., & Moyeed, R. A. (1998). Model-based geostatistics. Applied Statistics, 47(3), 299-350. DOI: 10.1007/978-0-387-48536-2

Freitas, J. R. B., Moitinho, M. R., De Bortoli, D. T., Silva, E. B., Silva, J. F., Siqueira, D. S., & Pereira, G. T. (2017). Soil factors influencing nematode spatial variability in soybean. Agronomy Journal, 109(2), 610-619. DOI: 10.2134/agronj2016.03.0160

Haas, T. C. (1990). Lognormal and moving window methods of estimating acid deposition. Journal of the American Statistical Association, 85(412), 950-963. DOI: 10.2307/2289592

Hbirkou, C., Welp, G., Rehbein, K., Hillnhütter, C., Daub, M., Oliver, M. A., & Pätzold, S. (2011). The effect of soil heterogeneity on the spatial distribution of Heterodera schachtii within sugar beet fields. Applied Soil Ecology, 51(1), 25-34. DOI: 10.1016/j.apsoil.2011.08.008

Holguin, C. M., Mueller, J. D., Khalilian, A., & Agudelo, P. (2015). Population dynamics and spatial distribution of Columbia lance nematode in cotton. Applied Soil Ecology, 95(1), 107-114. DOI: 10.1016/j.apsoil.2015.06.004

Martins, J. C., Picanço, M. C., Silva, R. S., Gonring, A. H., Galdino, T. V., & Guedes, R. N. (2018). Assessing the spatial distribution of Tuta absoluta (Lepidoptera: Gelechiidae) eggs in open-field tomato cultivation through geostatistical analysis. Pest Management Science, 74(1), 30-36. DOI: 10.1002/ps.4664

Masetti, A., Butturini, A., Lanzoni, A., De luigi, V., Burgio, G. (2015). Area-wide monitoring of potato tuberworm (Phthorimaea operculella) by pheromone trapping in Northern Italy: phenology, spatial distribution and relationships between catches and tuber damage. Agricultural and Forest Entomology, 17(2), 138-145. DOI: 10.1111/afe.12089

Patzold, S., Mertens, F. M., Bornemann, L., Koleczek, B., Franke, J., Feilhauer, H., & Welp, G. (2008). Soil heterogeneity at the field scale: a challenge for precision crop protection. Precision Agriculture, 9(6), 367-390. DOI: 10.1007/s11119-008-9077-x

Pimentel, P., Lopes, D. J. H., Mexia, A. M. M., & Mumford, J. D. (2017). Validation of a geographic weighted regression analysis as a tool for area-wide integrated pest management programs for Ceratitis capitata Wiedemann (Diptera: Tephritidae) on Terceira Island, Azores. International Journal of Pest Management, 63(2), 172-184. DOI: 10.1080/09670874.2016.1256512

Pulakkatu-Thodi, I., Reisig, D. D., Greene, J. K., Reay-Jones, F. P., & Toews, M. D. (2014). Within-field spatial distribution of Stink Bug (Hemiptera: Pentatomidae)-induced boll injury in commercial cotton fields of the southeastern United States. Environmental Entomology, 43(3), 744-752. DOI: 10.1603/EN13332

Rijal, J. P., Brewster, C. C., & Bergh, J. C. (2014). Spatial distribution of Grape Root Borer (Lepidoptera: Sesiidae) infestations in Virginia vineyards and implications for sampling. Environmental Entomology, 43(3), 716-728. DOI: 10.1603/EN13285

Rhodes, E. M., Liburd, O. E., & Grunwald, S. (2011). Examining the spatial distribution of flower thrips in southern highbush blueberries by utilizing geostatistical methods. Environmental Entomology, 40(4), 893-903. DOI: 10.1603/EN10312

Siqueira, G. M., Silva, J. S., Bezerra, J. M., Silva, E. F. F., Dafonte, J., & Melo, R. F. (2015). Estacionariedade do conteúdo de água de um Espodossolo Humilúvico. Revista Brasileira de Engenharia Agrícola e Ambiental, 19(5), 439-448. DOI: 10.1590/1807-1929/agriambi.v19n5p439-448

Souza, E. G., Bazzi, C. L., Khosla, R., Uribe-Opazo, M. A., & Reich, R. M. (2016). Interpolation type and data computation of crop yield maps is important for precision crop production. Journal of Plant Nutrition, 39(4), 531-538. DOI: 10.1080/01904167.2015.1124893

Taylor, R. A. J., Park, S. J., & Grewal, P. S. (2017). Nematode spatial distribution and the frequency of zeros in samples. Nematology, 19(3), 263-270. DOI: 10.1163/15685411-00003045

Terrien, J., Germain, G., Marque, C., & Karlsson, B. (2013). Bivariate piecewise stationary segmentation; improved pre-treatment for synchronization measures used on non-stationary biological signals. Medical Engineering & Physics, 35(8), 1188-1196. DOI: 10.1016/j.medengphy.2012.12.010

Walter, C., McBratney, A. B., Douaoui, A., & Minasny, B. (2001). Spatial prediction of topsoil salinity in the Chelif Valley, Algeria, using local ordinary kriging with local variograms versus whole-area variogram. Australian Journal of Soil Research, 39(2), 259-272. DOI: 10.1071/SR99114

Yamamoto, J. K., & Landin, P. M. B. (2013). Geoestatística: conceitos e aplicações. São Paulo, SP: Oficina de Textos.

Yawson, D. O., Adu, M. O., Vanderpuije, G., Arthur, W. S., Aggrey, K. T., & Boateng, E. (2017). Spatial distribution of nematodes at organic and conventional crop fields in Cape Coast, Ghana. West African Journal of Applied Ecology, 25(1), 57-66.

Publicado
2020-11-05
Como Citar
Silva, A. R. da, Silva, A. P. A., & Tiago Neto, L. J. (2020). A new local stochastic method for predicting data with spatial heterogeneity. Acta Scientiarum. Agronomy, 43(1), e49947. https://doi.org/10.4025/actasciagron.v43i1.49947
Seção
Biometria, Modelagem e Estatística

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus