Using fuzzy logic to select coloured-fibre cotton genotypes based on adaptability and yield stability

  • Daniel Bonifácio Oliveira Cardoso Universidade Federal de Uberlândia https://orcid.org/0000-0003-0421-0905
  • Lírian França Oliveira Universidade Federal de Uberlândia
  • Gabriela Santana de Souza Universidade Federal de Uberlândia
  • Myllena Fernandes Garcia Universidade Federal de Uberlândia
  • Luiza Amaral Medeiros Universidade Federal de Uberlândia
  • Priscila Neves Faria Universidade Federal de Uberlândia
  • Cosme Damião Cruz Universidade Federal Viçosa
  • Larissa Barbosa de Sousa Universidade Federal de Uberlândia
Palavras-chave: computational intelligence; Gossypium hirsutum; plant breeding.

Resumo

Cotton (Gossypium hirsutum L.) is the world’s leading natural textile fibre and is grown in over 60 countries, including Brazil, where it is an important agricultural commodity. The cultivation area currently covers approximately one million hectares in Brazil and has expanded into every region of the country, especially the Cerrado biome. Because of this expansion, it is necessary to analyse the influence of the environment on the genotype behaviour to optimize yields. Thus, the objective of this study was to compare fuzzy logic to traditional methods for selecting coloured-fibre cotton genotypes with high adaptability and yield stability. The experiment was conducted on the 2013/2014, 2014/2015, 2015/2016, and 2016/2017 crops of the Capim Branco farm at the Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil. The following methods were used to select genotypes for adaptability and stability: the Lin and Binns model, additive main effects and multiplicative interaction (AMMI) analysis and the Sugeno fuzzy logic controller. An interaction of the genotype with the environment that affected yield was detected. Environment 4 (the 2016/2017 crop) showed to the lowest genotype to environment interaction. The fuzzy logic approach showed agreement with AMMI and the nonparametric Lin and Binns method. The linguistic fuzzy logic used in the Sugeno fuzzy logic controller demonstrated the potential for selecting cotton genotypes in plant breeding programmes. The UFUJP-16 and UFUPJ-17 genotypes were adaptable, stable and showed promising yields within the tested environments. The fuzzy logic method was effective for estimating adaptability and stability.

Downloads

Não há dados estatísticos.

Referências

Alves, F. A. L., Sousa Cavalcante, F., Oliveira-Júnior, I. S., Ferraz, I., & Silva, S. M. S. (2019). Competição de variedades de algodão herbáceo para cultivo no agreste pernambucano. Pesquisa Agropecuária Pernambucana, 24(1), 1-8. DOI: 10.12661/pap.2019.003

Borém, A., & Freire, E. C. (2014). Algodão: do plantio a colheita. Viçosa, MG: UFV.

Carneiro, V. Q., Silva, G. N., Cruz, C. D., Carneiro, P. C. S., Nascimento, M., & Carneiro, J. E. S. (2017). Artificial neural networks as auxiliary tools for the improvement of bean plant architecture. Genetics and Molecular Research, 16(2), 1-12. DOI: 10.4238/gmr16029500

Carneiro, A. R. T., Sanglard, D. A., Azevedo, A. M., Souza, T. L. P. O. D., Pereira, H. S., & Melo, L. C. (2019). Fuzzy logic in automation for interpretation of adaptability and stability in plant breeding studies. Scientia Agricola, 76(2), 123-129. DOI: 10.1590/1678-992x-2017-0207.

Companhia Nacional de Abastecimento [CONAB]. (2019). Acompanhamento da safra brasileira de grãos (Vol. 12, Safra 2018/19, 12º levantamento, julho 2019). Retrieved on July 1, 2019 from https://bitlybr.com/76xpC

Cruz, C. D. (2016). Genes software: extended and integrated with the R, Matlab and Selegen. Acta Scientiarum. Agronomy, 38(4), 547-552. DOI: 10.4025/actasciagron.v38I3.32629

Cruz, C. D. & Nascimento, M. (2018). Inteligência computacional aplicada ao melhoramento genético. Viçosa, MG: Ed. UFV.

Cruz, C. D., Regazzi, A. J., & Carneiro, P. C. S. (2014a). Modelos biométricos aplicados ao melhoramento genético (3a. ed.). Viçosa, MG: UFV.

Cruz, C. D., Regazzi, A. J., & Carneiro, P. C. S. (2014b). Modelos biométricos aplicados ao melhoramento genético (3a. ed., Vol. 2.). Viçosa, MG: UFV.

Duarte, J. B., & Vencovsky, R. (1999). Interação Genótipos x Ambientes: Uma Introdução à Análise AMMI. Ribeirão Preto, SP: Sociedade Brasileira de Genética.

Eberhart, S. A., & Russell, W. A. (1966). Stability parameters for comparing varieties. Crop Science, 6(1), 36-40. DOI: 10.2135/cropsci1966.0011183X000600010011x

Gauch, H. G. (1998) Model selection and validation for yield trials with interaction. Biometrics, 44(3), 705-715. DOI: 10.2307/2531585

Hongyu, K, García-Peña, M., Araújo, L. B., & Santos Dias, C. T. (2014). Statistical analysis of yield trials by AMMI analysis of genotype x environment interaction. Biometrical Letters, 51(2), 89-102. DOI: 10.2478/bile-2014-0007

Lin, C. S., & Binns, M. R. (1988). A superiority measure of cultivar performance for cultivar x location data. Canadian Journal of Plant Science, 68(1), 193-198. DOI: 10.4141/CJPS88-018

Loka, D. A., Oosterhuis, D. M., & Ritchie, G. L. (2011). Water-deficit stress in cotton. In D. M. Oosterhuis (Ed.), Stress Physiology in Cotton (p. 37-72). Cordova, US: The Cotton Foundation.

Maleia, M. P., Raimundo, A, Moiana, L. D., Teca, J. O., Chale, F., Jamal, E., & Adamugy, B. A. (2017). Stability and adaptability of cotton (Gossypium hirsutum'L.) genotypes based on AMMI analysi. Australian Journal of Crop Science, 11(4), 367-372. DOI: 10.21475/ajcs.17.11.04.pne60.

Nascimento, M., Cruz, C. D., Campana, A. C. M., Tomaz, R. S., Salgado, C. C., & Ferreira, R. P. (2009). Alteração no método centroide de avaliação da adaptabilidade genotípica. Pesquisa Agropecuária Brasileira, 44(3) 263-269. DOI: 10.1590/S0100-204x2009000300007

Nascimento, M., Peternelli, L. A., Cruz, C. D., Nascimento, A. C. C., Ferreira, R. D. P., Bhering, L. L., & Salgado, C. C. (2013). Artificial neural networks for adaptability and stability evaluation in alfalfa genotypes. Crop Breeding and Applied Biotechnology, 13(2), 152-156. DOI: 10.1590/S1984-70332013000200008

Plaisted, R. L., & Peterson, L. C. (1959). A technique for evaluating the ability of selections to yield consistently in different locations or seasons. American Potato Journal, 36(11), 381-385. DOI: 10.1007/Bf02852735

Reis, M. C., Cardoso, D. B. O., Silva Júnior, E. G., Gomes, B. C., Pereira, L. T. G., Gomes, D. A., & Sousa, L. B. (2017). Correlation among traits as criterion of cotton genotypes indirect selection. Genetics and Molecular Research, 16(3), 1-9. DOI: 10.4238/gmr16039805

Queiroz, J. P. S., Costa, J. M., Neves, L. G., Seabra Junior, S., & Barelli, M. A. A. (2014). Estabilidade fenotípica de alfaces em diferentes épocas e ambientes de cultivo. Revista Ciência Agronômica, 45(2), 276-283. DOI: 10.1590/S1806-66902014000200007

Santos, J. W., Moreira, J. D. A. N., Farias, F. J. C., & Freire, E. C. (1998) Avaliação dos coeficientes de variação de algumas características da cultura do algodão: uma proposta de classificação. Revista Brasileira de Oleaginosas e Fibrosas, 2(1), 35-40.

Snider, J. L., Oosterhuis, D. M., Skulman, B. W., & Kawakami, E. M. (2009). Heat stress-induced limitations to reproductive success in Gossypium hirsutum. Physiologia Plantarum, 137(2), 125-138. DOI: 10.1111/j.1399-3054.2009.01266.x

Sobrinho, F. C., Fernandes, P. D., Beltrão, N. E. D. M., Soares, F. A., & Neto, C. P. T. (2007). Crescimento e rendimento do algodoeiro BRS-200 com aplicações de cloreto de mepiquat e lâminas de irrigação. Revista Brasileira de Engenharia Agrícola e Ambiental, 11(3), 284-292. DOI: 10.1590/S1415-43662007000300007

Sugeno, M., & Kang, G. T. (1988a). Structure identification of fuzzy model. Fuzzy Sets and Systems, 28(1), 15-33. DOI: 10.1016/0165-0114(88)90113-3

Sugeno, M., & Kang, G. T. (1988b). Fuzzy modelling and control of multilayer incinerator. Fuzzy Sets and Systems,18(3), 329-345. DOI: 10.1016/0165-0114(88)90192-3

Sugeno, M., & Tanaka, K. (1991). Successive identification of a fuzzy model and its applications to prediction of a complex system. Fuzzy Sets and Systems, 42(3), 315-334. DOI: 10.1016/0165-0114(91)90110-C

Sugeno, M., & Yasukawa, T. (1993). Fuzzy-logic-based approach to qualitative modeling. IEEE Transactions on Fuzzy Systems, 1(1), 7-31. DOI: 10.1109/Tfuzz.1993.390281

Takagi, T., & Sugeno, M. (1985). Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics, 15(1), 116-132. DOI: 10.1109/TSMC.1985.6313399

Yeates, S. J., Constable, G. A., & McCumstie, T. (2010). Irrigated cotton in the tropical dry season. III: Impact of temperature, cultivar and sowing date on fibre quality. Field Crops Research, 116(3), 300-307. DOI: 10.1016/j.fcr.2010.01.007

Zhao, D., Reddy, K. R., Kakani, V. G., Koti, S., & Gao, W. (2005). Physiological causes of cotton fruit abscission under conditions of high temperature and enhanced ultraviolet‐B radiation. Physiologia Plantarum, 124(2), 189-199. DOI: 10.1111/J.1399-3054.2005.00491.X

Publicado
2021-03-18
Como Citar
Cardoso, D. B. O., Oliveira, L. F., Souza, G. S. de, Garcia, M. F., Medeiros, L. A., Faria, P. N., Cruz, C. D., & Sousa, L. B. de. (2021). Using fuzzy logic to select coloured-fibre cotton genotypes based on adaptability and yield stability. Acta Scientiarum. Agronomy, 43(1), e50530. https://doi.org/10.4025/actasciagron.v43i1.50530
Seção
Genética e Melhoramento

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus