Long-term changes in the optimum planting date of gladiolus in southern Brazil
Resumo
The objective of this work was to test long-term trends in the planting date of gladiolus to ensure marketing of these flowers on Mother’s Day and All Souls’ Day in Santa Maria (latitude: 29° 43’ S, longitude: 53° 43’ W, and altitude: 95 m), Rio Grande do Sul State, Brazil. Minimum and maximum air temperature data from 106 years were used (1912-2017) to simulate the optimum planting date indicated through the PhenoGlad model, aiming to harvest floral stems for both market dates for early, intermediate I, intermediate II and late cultivars. The homogeneity of the historical series was tested using the run test, and the historical trend was tested by the Mann-Kendal test. The magnitude of the trend was estimated with simple linear regression, and the descriptive statistics were calculated. For marketing on Mother’s Day, there was no historical trend that implied a change in the planting date of gladiolus for any of the development cycles. For marketing on All Souls’ Day, there was a positive historical trend only for the early and intermediate cycles I and II; thus, the increase in air temperature implied a delay of 9.2 days, 9.5 days and 6.9 days for the planting date, respectively, indicating that a shortening of the gladiolus development cycle occurred, mainly in late winter/early spring.
Downloads
Referências
Back, A. J. (2001). Aplicação de análise estatística para identificação de tendências climáticas. Pesquisa Agropecuária Brasileira, 36(5), 717-726. DOI: 10.1590/S0100-204X2001000500001
Berlato, M. A., & Fontana, D. C. (2003). El Niño e La Niña: Impactos no clima, na vegetação e na agricultura do Rio Grande do Sul; Aplicações de previsões climáticas na agricultura. Porto Alegre, RS: Universidade Federal do Rio Grande do Sul.
Blecharczyk, A., Sawinska, Z., Malecka, I., Sparks, T. H., & Tryjanowski, P. (2016). The phenology of winter rye in Poland: an analysis of long-term experimental data. International Journal of Biometeorology, 60, 1341-1346. DOI: 10.1007/s00484-015-1127-2
Chmielewski, F. M., Müller, A., & Bruns, E. (2004). Climate changes and trends in phenology of fruit trees and field crops in Germany, 1961–2000. Agricultural and Forest Meteorology, 121(1-2), 69-78. DOI: 10.1016/S0168-1923(03)00161-8
Grimm, A. M., Barros, V. R., & Doyle, M. E. (2000). Climate variability in Southern South America associated with El Niño and La Niña events. Journal of Climate, 13(1), 35-58. DOI: 10.1175/1520-0442(2000)013<0035:CVISSA>2.0.CO;2
IPCC. (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK; New York, US: Cambridge University Press.
Marengo, J. A., & Camargo, C. C. (2008). Surface air temperature trends in Southern Brazil for 1960-2002. International Journal of Climatology, 28(7), 893-904. DOI: 10.1002/joc.1584
Mo, F., Sun, M., Liu, X., Wang, J, Zhang, X., Ma, B. L., & Xiong, Y. (2016). Phenological responses of spring wheat and maize to changes in crop management and rising temperatures from 1992 to 2013 across the Loess Plateau. Field Crops Research, 196, 337-347. DOI: 10.1016/j.fcr.2016.06.024
Pulatov, B., Linderson, M. J., Hall, K., & Jönsson, A. M. (2015). Modeling climate change impact on potato crop phenology, and riskof frost damage and heat stress in northern Europe. Agricultural and Forest Meteorology, 214, 281-292. DOI: 10.1016/j.agrformet.2015.08.266
Rezaei, E. E., Siebert, S., Hüging, H., & Ewert, F. (2018). Climate change effect on wheat phenology depends on cultivar change. Nature (Scientific Reports), 8(1), 1-10. DOI: 10.1038/s41598-018-23101-2
Sansigolo, C. A., & Kayano, M. T. (2010). Trends of seasonal maximum and minimum temperatures and precipitation in Southern Brazil for the 1913-2006 period. Theoretical and Applied Climatology, 101, 209-216. DOI: 10.1007/s00704-010-0270-2
Schwab, N. T., Streck, N. A., Ribeiro, B. S. M. R., Becker, C. C., Langner, J. A., Uhlmann, L. O., & Ribas, G. G. (2015a). Parâmetros quantitativos de hastes florais de gladíolo conforme a data de plantio em ambiente subtropical. Pesquisa Agropecuária Brasileira, 50(10), 902-911. DOI: 10.1590/S0100-204X2015001000006
Schwab, N. T., Streck, N. A., Becker, C. C., Langner, J. A., Uhlmann, L. O., & Ribeiro, B. S. M. R. (2015b). A phenological scale for the development of Gladiolus. Annals of Applied Biology, 166(3), 496-507. DOI: 10.1111/aab.12198
Siebert, S., & Ewert, F. (2012). Spatio-temporal patterns of phonological development in Germany in relation to temperature and day length. Agricultural and Forest Meteorology, 152, 44-57. DOI: 10.1016/j.agrformet.2011.08.007
Streck, N. A., Gabriel, L. F., Buriol, G. A., Heldwein, A. R., & Paula, G. M. de. (2011). Variabilidade interdecadal na série secular de temperatura do ar em Santa Maria, RS. Pesquisa Agropecuária Brasileira, 46(8), 781-790. DOI: 10.1590/S0100-204X2011000800001
Streck, N. A., Uhlmann, L. O., & Gabriel, L. F. (2012a). Long-term changes in rice development in Southern Brazil, during the last ten decades. Pesquisa Agropecuária Brasileira, 47(6), 727-737. DOI: 10.1590/S0100-204X2012000600001
Streck, N. A., Bellé, R. A., Backes, F. A. A. L., Gabriel, L. F., Uhlmann, L. O., & Becker, C. C. (2012b). Desenvolvimento vegetativo e reprodutivo em gladíolo. Ciência Rural, 42(11), 1968-1974. DOI: 10.1590/S0103-84782012001100010
Tao, F., Zhangb, Z., Zhanga, S., Rötterc, R. P., Shia, W., Xiaoa, D., … Zhang, H. (2016). Historical data provide new insights into response and adaptation of maize production systems to climate change/variability in China. Field Crops Research, 185, 1-11. DOI: 10.1016/j.fcr.2015.10.013
Tryjanowski, P., Sparks, T. H., Blecharczyk, A., Malecka-Jankowiak, J., Switek, S., & Sawinska, Z. (2018). Changing phenology of potato and of the treatment for its major pest (Colorado Potato Beetle) – A long-term analysis. American Journal of Potato Research, 95(1), 26-32. DOI: 10.1007/s12230-017-9611-3
Uhlmann, L. O., Streck, N. A., Becker, C. C., Schwab, N. T., Benedetti, R. P., Charão, A. S., … Becker, D. (2017). PhenoGlad: A model for simulating development in Gladiolus. European Journal of Agronomy, 82(Part A), 33-49. DOI: 10.1016/j.eja.2016.10.001
Wang, E., & Engel, T. (1998). Simulation of phenological development of wheat crops, Agricultural Systems, 58(1), 1-24. DOI: 10.1016/S0308-521X(98)00028-6
Xavier, A. C., King, C. W., & Scanlon, B. R. (2016). Daily gridded meteorological variables in Brazil (1980–2013). International Journal of Climatology, 36(6), 2644-2659. DOI: 10.1002/joc.4518
Xiao, D., Qi, Y., Shen, Y., Tao, F., Moiwo, J. P, Liu, J., … Liu, F. (2015). Impact of warming climate and cultivar change on maize phenology in the last three decades in North Chine Plain. Theoretical and Applied Climatology, 124, 653-661. DOI: 10.1007/s00704-015-1450-x
DECLARAÇÃO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.