Selection of filamentous fungi that are resistant to the herbicides atrazine, glyphosate and pendimethalin
Resumo
The objective of the present study was to isolate fungi from agricultural soils and evaluate fungal growth in culture medium contaminated with atrazine, glyphosate and pendimethalin. Filamentous fungi were isolated from agricultural soils and cultured in a modified culture medium containing 0, 10, 20, 50, and 100 μg mL-1 atrazine, glyphosate and pendimethalin for 14 days at 28°C. The fungi that presented optimal and satisfactory growth were plated in Sabouraud culture medium with 4% dextrose and containing the herbicides at concentrations of 0, 10, 20, 50, and 100 μg mL-1 for seven days at 28°C. The mean mycelial growth values were submitted to analysis of variance and the Tukey test (p < 0.05%) for comparison and relative growth determination, and maximum inhibition rates were calculated. The isolated fungi Aspergillus fumigatus, Fusarium verticillioides and Penicillium citrinum were shown to be resistant to atrazine, glyphosate and pendimethalin. F. verticillioides showed higher mean mycelial growth in the culture media contaminated with atrazine and glyphosate than the other two fungi. In the culture medium contaminated with pendimethalin, F. verticillioides, and A. fumigatus presented the highest mean mycelial growth values.
Downloads
Referências
Alegbeleye, O. O., Opeolu, B. O., & Jackson, V. A. (2017). Polycyclic aromatic hydrocarbons: a critical review of environmental Occurrence and bioremediation. Environmental Management, 60(4), 758-783. DOI:10.1007/s00267-017-0896-2
Barberis, C. L., Carranza, C. S., Magnoli, K., Benito, N., & Magnoli, C. E. (2018). Development and removal ability of non-toxigenic Aspergillus section Flavi in presence of atrazine, chlorpyrifos and endosulfan. Revista argentina de microbiologia, 51(1). DOI: 10.1016/j.ram.2018.03.002
Bonfleur, E. J., Tornisielo, V. L., Regitano, J. B., & Lavorenti, A. (2015). The effects of glyphosate and atrazine mixture on soil microbial population and subsequent impacts on their fate in a tropical soil. Water Air Soil Pollut, 226(22). DOI: 10.1007/s11270-014-2190-8
Carranza, C. S., Barberis, C. L., Chiacchiera, S. M., & Magnoli, C. E. (2017). Assessment of growth of Aspergillus spp. from agricultural soils in the presence of glyphosate. Revista Argentina de Microbiología, 49(4), 384-393. DOI: 10.1016/j.ram.2016.11.007
Chan-Cupul, W., Heredia-Abarca, G., & Rodríguez-Vázquez, R. (2016). Atrazine degradation by fungal co-culture enzyme extracts under different soil conditions. Journal of Environmental Science and Health, Part B, 51(5), 298-308. DOI: 10.1080/03601234.2015.1128742
Coelho, E. R. C., & Bernardo, L. D. (2017). Presença e remoção de atrazina, desetilatrazina, desisopropilatrazina e desetilhidroxiatrazina em instalação piloto de ozonização e filtração lenta. Engenharia Sanitária e Ambiental, 22(4), 789-796. DOI: 10.1590/s1413-41522017147638
Costa, T. M., Sperb, J. G. C., Roncheti, A. L., Botelho, T. K. R., Sell, T. M., Bertoli, S. L., & Tavares, L. B. B. (2015). Evaluation of radial specific growth rate fungus in residual vegetable oil. Revista de Estudos Ambientais, 17(2), 29-40. DOI: 10.7867/1983-1501.2015v17n2p29-40
Deshmukh, R., Khardenavis, A. A., & Purohit, H. J. (2016). Diverse metabolic capacities of fungi for bioremediation. Indian Journal of Microbiology, 56(3), 247-264. DOI: 10.1007/s12088-016-0584-6
Ferreira, D. F. (2019). Sisvar: a computer analysis system to fixed effects split plot type designs. Revista Brasileira de Biometria, 37(4), 529-535. DOI: 10.28951/rbb.v37i4.450
Fu, G., Chen, Y., Li, R., Yuan, X., Liu, C., Li, B., & Wan, Y. (2017). Pathway and rate-limiting step of glyphosate degradation by Aspergillus oryzae A-F02. Preparative Biochemistry and Biotechnology, 47(8), 782-788. DOI: 10.1080/10826068.2017.1342260
Gill, J. P. K., Sethi, N., & Mohan, A., (2017). Analysis of the glyphosate herbicide in water, soil and food using derivatising agents. Environmental Chemistry Letters, 15(1), 85-100. DOI: 10.1007/s10311-016-0585-z
Kanagaraj, J., Senthilvelan, T., & Panda, R. C. (2015). Degradation of azo dyes by laccase: biological method to reduce pollution load in dye wastewater. Clean Technologies and Environmental Policy, 17(6), 1443-1456. DOI: 10.1007/s10098-014-0869-6
Khayati, G., & Barati, M. (2017). Bioremediation of petroleum hydrocarbon contaminated soil: optimization strategy using Taguchi design of experimental (DOE) methodology. Environmental Processes, 4(2), 451-461. DOI: 10.1007/s40710-017-0244-9
Kpagh, J., Sha’Ato, R., Wuana, R. A., & Tor-Anyiin, T. A. (2016). Kinetics of Sorption of Pendimethalin on Soil Samples Obtained from the Banks of Rivers Katsina-Ala and Benue, Central Nigeria. Journal of Geoscience and Environment Protection, 4, 37-42. DOI: 10.4236/gep.2016.41004
Ma, L., Chen, S., Yuan, J., Yang, P., Liu, Y., & Stewart, K. (2017). Rapid biodegradation of atrazine by Ensifer sp. strain and its degradation genes. International Biodeterioration & Biodegradation, 116, 133-140. DOI: 10.1016/j.ibiod.2016.10.022
Marinho, G., Barbosa, B. C. A., Rodrigues, K., Aquino, M., & Pereira, L. (2017). Potential of the filamentous fungus Aspergillus niger AN 400 to degrade Atrazine in wastewaters. Biocatalysis and Agricultural Biotechnology, 9, 162-167. DOI: 10.1016/j.bcab.2016.12.013
Moraes, R. F. (2019). Agrotóxicos no Brasil: padrões de uso, política da regulação e prevenção da captura regulatória (Report 2506). Brasília, DF: Ipea. DOI: 10.13140/RG.2.2.12874.72645
Moreno-Mateos, D., Meli, P., Vara-Rodríguez, M. I., & Aronson, J. (2015). Ecosystem response to interventions: lessons from restored and created wetland ecosystems. Journal of Applied Ecology, 52(6), 1528-1537. DOI: 10.1111/1365-2664.12518
Ni, H., Li, N., Qiu, J., Chen, Q., & He, J. (2018). Biodegradation of Pendimethalin by Paracoccus sp. P13. Current Microbiology, 75(8), 1077-1083. DOI: 10.1007/s00284-018-1494-0
Oliveira, K. J. B., Lima, J. S. S., Ambrósio, M. M. Q., Bezerra Neto, F., & Chaves, A. (2017). Propriedades nutricionais e microbiológicas do solo influenciadas pela adubação verde. Revista de Ciências Agrárias, 40(1), 23-33. DOI: 10.19084/RCA16010
Peng, J., Lu, X., Jiang, X., Zhang, Y., Chen, Q., Lai, B., & Yao, G. (2018). Degradation of atrazine by persulfate activation with copper sulfide (CuS): Kinetics study, degradation pathways and mechanism. Chemical Engineering Journal, 354, 740-752. DOI: 10.1016/j.cej.2018.08.038
Rodríguez-Liébana, J. A., ElGouzi, S., & Peña, A. (2017). Laboratory persistence in soil of thiacloprid, pendimethalin and fenarimol incubated with treated wastewater and dissolved organic matter solutions. Contribution of soil biota. Chemosphere, 181, 508-517. DOI: 10.1016/j.chemosphere.2017.04.111
Sidoli, P., Baran, N., & Angulo-Jaramillo, R. (2015). Glyphosate and AMPA adsorption in soils: laboratory experiments and pedotransfer rules. Environmental Science and Pollution Research, 23(6), 5733-5742. DOI: 10.1007/s11356-015-5796-5
Tobler, N. B., Hofstetter, T. B., & Schwarzenbach, R. P. (2007). Assessing iron-mediated oxidation of toluene and reduction of nitroaromatic contaminants in anoxic environments using compound-specific isotope analysis. Environmental Science & Technology, 41(22), 7773-7780. DOI: 10.1021/es071129c
Wang, S., Seiwert, B., Kästner, M., Miltner, A., Schäffer, A., Reemtsma, T., … Nowak, K. M. (2016). (Bio)degradation of glyphosate in water-sediment microcosms. A stable isotope co-labeling approach. Water Research, 99, 91-100. DOI: 10.1016/j.watres.2016.04.041
Yu, X. M., Yu, T., Yin, G. H., Dong, Q. L., An, M., Wang, H. R., & Ai, C. X. (2015). Glyphosate biodegradation and potential soil bioremediation by Bacillus subtilis strain Bs-15. Genetics and Molecular Research, 14(4), 14717-14730. DOI: 10.4238/2015.november.18.37
Zhan, H., Feng, Y., Fan, X., & Chen, S. (2018). Recent advances in glyphosate biodegradation. Applied Microbiology and Biotechnology, 102(12), 5033-5043. DOI: 10.1007/s00253-018-9035-0
Zhao, B., Feng, S., Hu, Y., Wang, S., & Lu, X. (2019). Rapid determination of atrazine in apple juice using molecularly imprinted polymers coupled with gold nanoparticles-colorimetric/SERS dual chemosensor. Food Chemistry, 276, 366-375. DOI: 10.1016/j.foodchem.2018.10.036
DECLARAÇÃO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.