Coconut fiber biochar alters physical and chemical properties in sandy soils

  • Simone Francieli Guarnieri Universidade Federal de Mato Grosso
  • Elisamara Caldeira do Nascimento Universidade Federal de Mato Grosso
  • Robson Ferreira Costa Junior Universidade Federal de Mato Grosso
  • Jorge Luiz Brito de Faria Universidade Federal de Mato Grosso
  • Francisco de Almeida Lobo Universidade Federal de Mato Grosso
Palavras-chave: agroindustry residues; nutrient retention; pyrolyzed carbon; sandy soil; soil water retention

Resumo

This work aimed to characterize the biochar produced from residues of coconut fruit and to evaluate how it might beneficially alter the retention capacity of water and nutrients in soils with a sandy texture. The biochar was produced in a retort furnace and later analyzed to determine its chemical and physical characteristics. Experiments to analyze the retention potential of the biochar for water and nutrients were performed in PVC columns filled to a 400 mm depth, with the upper 300 mm receiving treatments that consisted of 0, 1, 2, 3, 4, and 5% (p p-1) biochar mixed with soil. For the nutrient retention experiment, in addition to the biochar concentrations, the treatments received the same NPK fertilization. The experiments were performed in a completely randomized design with four replications. The water retention in the upper 300 mm, as well as the pH, effective cation exchange capacity (ECEC) of the substrate, base saturation, and concentrations of P and K, increased with increasing biochar concentration. Coconut biochar demonstrated potential for increasing water retention and improving nutrient retention in sandy soils.

Downloads

Não há dados estatísticos.

Referências

Batista, E. M. C. C., Shultz, J., Matos, T. T. S., Fornari, M. R., Ferreira, T. M., Szpoganicz, B., … Mangrich, A. S. (2018). Effect of surface and porosity of biochar on water holding capacity aiming indirectly at preservation of the Amazon biome. Scientific Reports, 8(1), 1-9. DOI: 10.1038/s41598-018-28794-z

Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60(2), 309-319. DOI: 10.1021/ja01269a023

Bruun, E. W., Petersen, C. T., Hansen, E., Holm, J. K., & Hauggaard-Nielsen, H. (2014). Biochar amendment to coarse sandy subsoil improves root growth and increases water retention. Soil Use and Management, 30(1), 109-118. DOI: 10.1111/sum.12102

Cha, J. S., Park, S. H., Jung, S. C., Ryu, C., Jeon, J. K., Shin, M. C., & Park, Y. K. (2016). Production and utilization of biochar: A review. Journal of Industrial and Engineering Chemistry, 40, 1-15. DOI: 10.1016/j.jiec.2016.06.002

Chintala, R., Subramanian, S., Fortuna, A. M., & Schumacher, T. E. (2016). Examining biochar impacts on soil abiotic and biotic processes and exploring the potential for pyrosequencing analysis. Biochar Application: Essential Soil Microbial Ecology, 2016, 133-162. DOI: 10.1016/B978-0-12-803433-0.00006-0

Cunha, G. M., Gama-Rodrigues, A. C., Costa, G. S., & Velloso, A. C. X. (2007). Fósforo orgânico em solos sob florestas montanas, pastagens e eucalipto no norte fluminense. Revista Brasileira de Ciência do Solo, 31(4), 667-672. DOI: 10.1590/s0100-06832007000400007

Eykelbosh, A. J., Johnson, M. S., & Couto, E. G. (2015). Biochar decreases dissolved organic carbon but not nitrate leaching in relation to vinasse application in a Brazilian sugarcane soil. Journal of Environmental Management, 149, 9-16. DOI: 10.1016/j.jenvman.2014.09.033

Ferrari, A. C., & Robertson, J. (2000). Interpretation of Raman spectra of disordered and amorphous carbon. Physical Review B, 61(20), 14095-14107. DOI: 10.1103/PhysRevB.61.14095

Głąb, T., Palmowska, J., Zaleski, T., & Gondek, K. (2016). Effect of biochar application on soil hydrological properties and physical quality of sandy soil. Geoderma, 281, 11-20. DOI: 10.1016/j.geoderma.2016.06.028

Guimarães, D. V., Gonzaga, M. I. S., Silva, T. O., Silva, T. L., Silva Dias, N., & Matias, M. I. S. (2013). Soil organic matter pools and carbon fractions in soil under different land uses. Soil and Tillage Research, 126, 177-182. DOI: 10.1016/j.still.2012.07.010

Jegajeevagan, K., Mabilde, L., Gebremikael, M. T., Ameloot, N., De Neve, S., Leinweber, P., & Sleutel, S. (2016). Artisanal and controlled pyrolysis-based biochars differ in biochemical composition, thermal recalcitrance, and biodegradability in soil. Biomass and Bioenergy, 84, 1-11. DOI: 10.1016/j.biombioe.2015.10.025

Lee, Y., Park, J., Ryu, C., Gang, K. S., Yang, W., Park, Y.-K., … Hyun, S. (2013). Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500°C. Bioresource Technology, 148, 196-201. DOI: 10.1016/j.biortech.2013.08.135

Lehmann, J., & Joseph, S. (2009). Biochar for environmental management : an introduction. In J. Lehmann, & S. Joseph (Eds.), Biochar for environmental management: science and technology (Vol. 1, p. 1-12). London, UK: Earthscan.

Lehmann, J., & Stephen, J. (2015). Biochar for Environmental Management (2nd ed.). London, UK: Routledge. DOI: 10.4324/9780203762264

Leite, L. F. C., Iwata, B. de F., & Araújo, A. S. F. (2014). Soil organic matter pools in a tropical savanna under agroforestry system in Northeastern Brazil. Revista Árvore, 38(4), 711-723. DOI: 10.1590/s0100-67622014000400014

Lima, J. R. S., Moraes Silva, W., Medeiros, E. V., Duda, G. P., Corrêa, M. M., Martins Filho, A. P., … Hammecker, C. (2018). Effect of biochar on physicochemical properties of a sandy soil and maize growth in a greenhouse experiment. Geoderma, 319(April 2017), 14-23. DOI: 10.1016/j.geoderma.2017.12.033

Limwikran, T., Kheoruenromne, I., Suddhiprakarn, A., Prakongkep, N., & Gilkes, R. J. (2018). Dissolution of K, Ca, and P from biochar grains in tropical soils. Geoderma, 312 (October 2017), 139-150. DOI: 10.1016/j.geoderma.2017.10.022

Liu, Z., & Balasubramanian, R. (2014). A comparative study of nitrogen conversion during pyrolysis of coconut fiber, its corresponding biochar and their blends with lignite. Bioresource Technology, 151, 85-90. DOI: 10.1016/j.biortech.2013.10.043

Liu, Z., Quek, A., Kent Hoekman, S., & Balasubramanian, R. (2013). Production of solid biochar fuel from waste biomass by hydrothermal carbonization. Fuel, 103, 943-949. DOI: 10.1016/j.fuel.2012.07.069

López, A., Marco, I., Caballero, B. M., Laresgoiti, M. F., & Adrados, A. (2011). Influence of time and temperature on pyrolysis of plastic wastes in a semi-batch reactor. Chemical Engineering Journal, 173(1), 62-71. DOI: 10.1016/j.cej.2011.07.037

Mendonça, F. G., Cunha, I. T., Soares, R. R., Tristão, J. C., & Lago, R. M. (2017). Tuning the surface properties of biochar by thermal treatment. Bioresource Technology, 246(May), 28-33. DOI: 10.1016/j.biortech.2017.07.099

Ministério da Agricultura, Pecuária e Abastecimento [MAPA]. (2014). Manual de métodos analíticos oficiais para fertilizantes e corretivos. Brasília, DF: MAPA/SDA/CGAL.

Norström, S. H., Bylund, D., Vestin, J. L. K., & Lundström, U. S. (2012). Initial effects of wood ash application to soil and soil solution chemistry in a small, boreal catchment. Geoderma, 187, 85-93. DOI: 10.1016/j.geoderma.2012.04.011

Placido, J., Capareda, S., & Karthikeyan, R. (2016). Production of humic substances from cotton stalks biochar by fungal treatment with Ceriporiopsis subvermispora. Sustainable Energy Technologies and Assessments, 13, 31-37. DOI: 10.1016/j.seta.2015.11.004

Prakongkep, N., Gilkes, R. J., & Wiriyakitnateekul, W. (2015). Forms and solubility of plant nutrient elements in tropical plant waste biochars. Journal of Plant Nutrition and Soil Science, 178(5), 732-740. DOI: 10.1002/jpln.201500001

Putrino, F. M., Tedesco, M., Bodini, R. B., & Oliveira, A. L. (2020). Study of supercritical carbon dioxide pretreatment processes on green coconut fiber to enhance enzymatic hydrolysis of cellulose. Bioresource Technology, 309(April), 123387. DOI: 10.1016/j.biortech.2020.123387

R Core Team. (2019). R: A language and environment for statistical computing. Vienna, AT: R Foundation for Statistical Computing. Recovered from http://www.r-project.org/

Santos, H. G., Jacomine, P. K. T., Anjos, L. H. C., Oliveira, V. Á., Lumbreras, J. F., Coelho, M. R., … Cunha, T. J. F. (2018). Sistema brasileiro de classificação de solos (5a ed.). Brasília, DF: Embrapa Solos.

Silva, F. C. , (2009). Manual de análises químicas de solos, plantas e fertilizantes (2a ed.). Brasília, DF: Embrapa Informação Tecnológica.

Silva Junior, F. B. D. S., Sousa, G. G., Sousa, J. T. M., Lessa, C. I. N., & Silva, F. D. B. (2020). Salt stress and ambience on the production of watermelon seedlings. Revista Caatinga, 33(2), 518-528. DOI: 10.1590/1983-21252020v33n224rc

Song, W., & Guo, M. (2012). Quality variations of poultry litter biochar generated at different pyrolysis temperatures. Journal of Analytical and Applied Pyrolysis, 94, 138-145. DOI: 10.1016/j.jaap.2011.11.018

Suliman, W., Harsh, J. B., Abu-Lail, N. I., Fortuna, A. M., Dallmeyer, I., & Garcia-Pérez, M. (2017). The role of biochar porosity and surface functionality in augmenting hydrologic properties of a sandy soil. Science of the Total Environment, 574, 139-147. DOI: 10.1016/j.scitotenv.2016.09.025

Tan, X.-fei, Liu, S.-bo, Liu, Y.-guo, Gu, Y.-ling, Zeng, G.-ming, Hu, X.-jiang, … Jiang, L.-hua. (2017). Biochar as potential sustainable precursors for activated carbon production: Multiple applications in environmental protection and energy storage. Bioresource Technology, 227, 359-372. DOI: 10.1016/j.biortech.2016.12.083

Teixeira, P. C., Donagemma, G. K., Fontana, A., & Teixeira, W. G. (Eds.), (2017). Manual de métodos de análise de solo (3. ed.). Brasília, DF: Embrapa.

Tuinstra, F., & Koenig, J. L. (1970). Raman spectrum of graphite. The Journal of Chemical Physics, 53(3), 1126-1130. DOI: 10.1063/1.1674108

Uzoma, K. C., Inoue, M., Andry, H., Fujimaki, H., Zahoor, A., & Nishihara, E. (2011). Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use and Management, 27(2), 205-212. DOI: 10.1111/j.1475-2743.2011.00340.x

Wu, W., Yang, M., Feng, Q., McGrouther, K., Wang, H., Lu, H., & Chen, Y. (2012). Chemical characterization of rice straw-derived biochar for soil amendment. Biomass and Bioenergy, 47, 268-276. DOI: 10.1016/j.biombioe.2012.09.034

Yuan, J.-H., Xu, R.-K., & Zhang, H. (2011). The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technology, 102(3), 3488-3497. DOI: 10.1016/j.biortech.2010.11.018

Zheng, H., Wang, Z., Deng, X., Herbert, S., & Xing, B. (2013a). Impacts of adding biochar on nitrogen retention and bioavailability in agricultural soil. Geoderma, 206(9), 32-39. DOI: 10.1016/j.geoderma.2013.04.018

Zheng, H., Wang, Z., Deng, X., Zhao, J., Luo, Y., Novak, J., … Xing, B. (2013b). Characteristics and nutrient values of biochars produced from giant reed at different temperatures. Bioresource Technology, 130, 463-471. DOI: 10.1016/j.biortech.2012.12.044

Zielińska, A., Oleszczuk, P., Charmas, B., Skubiszewska-Zięba, J., & Pasieczna-Patkowska, S. (2015). Effect of sewage sludge properties on the biochar characteristic. Journal of Analytical and Applied Pyrolysis, 112, 201-213. DOI: 10.1016/j.jaap.2015.01.025

Publicado
2021-07-05
Como Citar
Guarnieri, S. F., Nascimento, E. C. do, Costa Junior, R. F., Faria, J. L. B. de, & Lobo, F. de A. (2021). Coconut fiber biochar alters physical and chemical properties in sandy soils. Acta Scientiarum. Agronomy, 43(1), e51801. https://doi.org/10.4025/actasciagron.v43i1.51801
Seção
Produção Vegetal

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus