Soil biological attributes in monoculture and integrated systems in the Cerrado region of Piauí State, Brazil
Resumo
The implementation of integrated agricultural production systems is considered a promising strategy for sustainable agricultural intensification in Brazil. This study aimed to evaluate the effects of different monoculture and integrated production systems on the microbiological attributes and organic carbon of soil from the Cerrado region in Piauí, Brazil. Soil samples were collected from the 0.0-0.10-m layer in the following systems: no-tillage (PD), pasture (PAS), exclusive eucalyptus cultivation (CEE), integrated livestock-forest system (IPF) and a native Cerrado (CN) area, which was used as reference. Total organic carbon (TOC) and nitrogen (NT) contents, microbial biomass carbon (CMIC), microbial respiration (MR), microbial quotient (qMIC), metabolic quotient (qCO2), as well as the activities of the hydrolysis of fluorescein diacetate (FDA), acid phosphatase, β-glucosidase and urease enzymes were evaluated. High TOC contents were found in the CEE, IPF and PAS systems, and high CMIC and qMIC values were found in the CN and CEE systems. The variables MR, qCO2 and enzymatic activity varied as a function of the management systems. The IPF and CEE systems caused improvements in the soil attributes, with increases in organic carbon and microbial biomass. The IPF integrated production system promoted improvements in the microbiological indicators of soil quality and was considered an environmentally sustainable agricultural production system. The transition from CN to agricultural areas caused changes in the soil microbiological indicators, which were perceived several years after anthropogenic intervention, indicating that even with the adoption of conservation systems, it was not possible to reestablish the soil microbial biomass.
Downloads
Referências
Alef, K., & Nannipieri, P. (1995). Methods in applied soil microbiology and biochemistry. London, UK: Academic Press.
Anderson, T. H., & Domsch, K. H. (1993). The metabolic quotient for CO2 (qCO2) as a specific activity parameter to assess the effects of environmental conditions, such as pH, on the microbial biomass of forest soils. Soil Biology & Biochemistry, 25, 393-395. DOI: 10.1016/0038-0717(93)90140-7
Balota, E. L., Yada, I. F., Amaral, H., Nakatani, A. S., Dick, R. P., & Coyne, M. S. (2014). Long-term land use influences soil microbial biomass P and S, phosphatase and arylsulfatase activities, and S mineralization in a Brazilian Oxisol. Land Degradation & Development, 25, 397-406. DOI: 10.1002/ldr.2242
Bolfe, E. L., Victória, D. C., Contini, E., Silva, G. B., Araújo, L. S., & Gomes, D. (2016). Matopiba em crescimento agrícola: aspectos territoriais e socioeconômicos. Revista de Política Agrícola, 25(4), 38-62.
Bonetti, J. A., Paulino, H. B., Souza, E. D., Carneiro, M. A. C., & Caetano, J. O. (2018). Soil physical and biological properties in an integrated crop-livestock system in the Brazilian Cerrado. Pesquisa Agropecuária Brasileira, 53(11), 1239-1247. DOI: 10.1590/S0100-204X2018001100006
Bremner, J. M. (1996). Nitrogen total. In D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, … M. E. Sumner (Eds.), Methods of soil analysis: part 3. Chemical Metrhods, 5.3 (p. 1085-1121). [S.l.]: SSA Book Series.
Campos, A. C., Etchevers, J. B., Oleschko, K. L., & Hidalgo, C. M. (2014). Soil microbial biomass and nitrogen mineralization rates along an altitudinal gradient on the cofre de perote volcano (Mexico): the importance of landscape position and land use. Land Degradation & Development, 25, 581-593. DOI: 10.1002/ldr.2185
Cardozo Junior, F. M., Carneiro, R. F. V., Rocha, S. M. B., Nunes, L. A. P. L., Santos, V. M., Feitoza, L. L., & Araújo, A. S. F. (2016). The impact of pasture systems on soil microbial biomass and community-level physiological profiles. Land Degradation & Development. DOI: 10.1002/ldr.2565
Chen, W. D., Hoitink, H. A., Schmitthenner, A. F., & Tuovinen, O. H. (1988). The role of microbial activity in suppression of damping-off caused by Pythium ultimum. Phytopathology, 78, 314-322. DOI: 10.1094/PHYTO-95-0306
Conte, E., Anghinoni, I., & Rheinheimer, D. S. (2002). Fósforo da biomassa microbiana e atividade de fosfatase ácida após aplicação de fosfato em solo no sistema plantio direto. Revista Brasileira de Ciência do Solo, 26(4), 925-930. DOI: 10.1590/S0100-06832002000400009
Eivazi, F., & Tabatabai, M. A. (1988). Glucosidades and galactosidades in soils. Soil Biology & Biochemistry, 20(5), 601-606. DOI: 10.1016/0038-0717(88)90141-1
Ferreira, A. S., Camargo, F. A. O., & Vidor, C. (1999). Utilização de microondas na avaliação da biomassa microbiana do solo. Revista Brasileira de Ciência do Solo, 23(4), 991-996. DOI: 10.1590/S0100-06831999000400026
Ferreira, E. P. B.; Stone, L. F., & Martin-Didonet, C. C. G. (2017). População e atividade microbiana do solo em sistema agroecológico de produção. Revista Ciência Agronômica, 48(1), 22-31. DOI: 10.5935/1806-6690.20170003
Gatiboni, L. C., Kaminski, J., Rheinheimer, D. S., & Brunetto, G. (2008). Fósforo da biomassa microbiana e atividade de fosfatases ácidas durante a diminuição do fósforo disponível no solo. Pesquisa Agropecuária Brasileira, 43(8), 1085-1091. DOI: 10.1590/S0100-204X2008000800019
Islam, K. R., & Weil, R. R. (1998). Microware irradiation of soil for routine measurement of microbial biomass carbon. Biology and Fertility of Soils, 27, 408-416. DOI: 10.1007/s003740050451
Jacomine, P. K. T., Cavalcanti, A. C., Pessôa, S. C. P., Burgos, N., Melo Filho, H. F. R., Lopes, O. F., & Medeiros, L. A. R. (1986). Levantamento exploratório – reconhecimento de solos do Estado do Piauí. Rio de Janeiro, RJ: Embrapa-SNLCS/Sudene-DRN.
Kandeler, E., & Gerber, H. (1988). Short-term assay of soil urease activity using colorimetric determination of ammonium. Biology and Fertility of Soils, 6, 68-72. DOI: 10.1007/BF00257924
Nunes, L. A. P. L.; Pessoa, M. C. M.; Silva, F. R.; Araújo, A. S. F.; Matos Filho, C. H. A., & Santos, V. B. (2018). Microbiological attributes of yellow oxissol under different monocultures in the savanna region of Piauí State. Bioscience Journal, 34(5), 1210-1218. DOI: 10.14393/BJ-v34n5a2018-39463.
Oliveira, B. S.; Carvalho, M. A. C.; Lange, A.; Wruck, F. J., & Dallacort, R. (2015). Atributos biológicos do solo em sistema de integração lavoura-pecuária-floresta na região amazônica. Engenharia na Agricultura, 23(5), 448-456. DOI:10.13083/1414-3984/reveng.v23n5p448-456
Pulleman, M., Creamer, R., Hamer, U., Helder, J., Pelosi, C., Péres, G., & Rutgers, M. (2012). Soil biodiversity, biological indicators and soil ecosystem services - an overview of European approaches. Current Opinion in Environmental Sustainability, 4(5), 529-538. DOI: 10.1016/j.cosust.2012.10.009
Silva, C. F., Pereira, M. G., Miguel, D. L., Feitora, J. C. F., Loss, A., Menezes, C. E., & Silva, E. M. R. (2012). Carbono orgânico total, biomassa microbiana e atividade enzimática do solo de áreas agrícolas, florestais e pastagem no Médio Vale do Paraíba do Sul (RJ). Revista Brasileira de Ciência do Solo, 36(6), 1680-1689. DOI: 10.1590/S0100-06832012000600002
Singh, K. (2016). Microbial and enzyme activities of saline and sodic soils. Land Degradation & Development, 27(3), 706-718. DOI: 10.1002/ldr.2385.
Statistical Analysis System [SAS]. (2014). SAS® 9.2 Software. Cary, CA: SAS Institute. Recovered from http://suport.sas.com/software/92
Stieven, A. C., Oliveira, D. A., Santos, J. O., Wruck, F. J., & Campos, D. T. S. (2014). Impacts of integrated crop-livestock-forest on microbiological indicators of soil. Revista Brasileira de Ciência Agrária, 9(1), 53-58. DOI: 10.5039/agraria.v9i1a3525
Tabatabai, M. A., & Bremner, J. M. (1969). Use of p-nitrophenylphosphate for assay of soil phosphatase activity. Soil Biology & Biochemistry, 1(4), 301-307. DOI: 10.1016/0038-0717(69)90012-1
Teodoro, P. E., Ribeiro, L. P., Oliveira, E. P., Corrêa, C. G., & Torres, F. E. (2015). Dry mass in soybean in response to application leaf with silicon under conditions of water deficit. Bioscience Journal, 31(1), 161-170. DOI: 10.14393/BJ-v31n1a2015-22283
Wu, J. P., Liu, Z. F., Sun, Y. X., Zhou, L. X., Lin, Y. B., & Fu, S. L. (2013). Introduced eucalyptus urophylla plantations change the composition of the soil microbial community in subtropical China. Land Degradation & Development, 24, 400-406. DOI: 10.1002/ldr.2161
Yeomans, J. C., & Bremner, J. M. (1988). A rapid and precise method for routine determination of organic carbon in soil. Communications Soil Science Plant Analysis, 19, 1467-1476. DOI: 10.1080/00103628809368027
Zago, L. M. Z., Oliveira, R. N., Bombonatto, A. K. G., Moreira, L. M. O., Melo, E. N. P., & Caramori, S. S. (2016). Enzimas extracelulares de solo de Cerrado como bioindicadores de qualidade em áreas agriculturáveis em Goiás, Brasil. Fronteiras: Journal of Social, Technological and Environment Science, 5(1), 104-127. DOI: 10.21664/2238-8869.2016v5i1.p104-127
DECLARAÇÃO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.