Seed priming improves Salvia hispanica L. seed performance under salt stress

Palavras-chave: chia; salinity; osmotic potentials; salicylic acid; gibberellic acid.

Resumo

Salvia hispanica L. is an alternative crop cultivated by farmers who want to diversify their production. However, this species is sensitive to salinity, which affects its germination negatively. Seed priming with different attenuators is a technique with potential to mitigate the effects of salt stress. Thus, the objective of this study was to evaluate the effect of seed priming with the use of different attenuators on the germination, growth, and organic solute accumulation of S. hispanica seedlings under salt stress. The experimental design was completely randomized, with treatments distributed in a 4 × 5 factorial scheme, corresponding to four seed priming treatments and five osmotic potentials, with four replicates of 50 seeds in each treatment. The seed treatments consisted of presoaking seeds for 4h in salicylic acid, gibberellic acid, and distilled water and the control treatment, which did not involve soaking. These seeds were germinated at osmotic potentials of 0.0, -0.1, -0.2, -0.3, and -0.4 MPa, using NaCl as an osmotic agent to simulate the different salinity levels. Among all the treatments implemented, S. hispanica seed priming with salicylic acid was the most efficient in mitigating the salt stress effects.

Downloads

Não há dados estatísticos.

Referências

Agami, R. A. (2013). Alleviating the adverse effects of NaCl stress in maize seedlings by pretreating seeds with salicylic acid and 24-epibrassinolide. South African Journal of Botany, 88(1), 171-177.

DOI: 10.1016/j.sajb.2013.07.019

Anaya, F., Fghire, R., Wahbi, S., & Loutfi, K. (2018). Influence of salicylic acid on seed germination of Vicia faba L. under salt estress. Journal of the Saudi Society of Agricultural Science, 17(1), 1-8.

DOI: 10.1016/j.jssas.2015.10.002

Ashraf, M., Akram, N. A., Alqurainy, F., & Foolad, M. R. (2011). Drought tolerance: roles of organic osmolytes, growth regulators, and mineral nutrients. Advances in Agronomy, 111(1), 249-296.

DOI: 10.1016/B978-0-12-387689-8.00002-3

Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207. DOI: 10.1007/BF00018060

Busilacchi, H., Bueno, M., Severin, S., Di Sapio, O., Quiroga, M., & Flores, V. (2013). Evaluación de Salvia hispanica L. cultivada en el sur de Santa Fé (República Argentina). Cultivos Tropicales, 34(4), 55-59.

Esteves, B. S., & Suzuki, M. S. (2008). Efeito da salinidade sobre as plantas. Oecologia Brasiliensis, 12(4), 662-669.

Falco, B., Amato, M., & Lanzotti, V. (2017). Chia seeds products: an overview. Phytochemistry Reviews, 16(4), 745-760. DOI: 10.1007/s11101-017-9511-7

Fardus, J., Matinm, M. A., Hasanuzzamanm M., & Hossain M. A. (2018). Salicylic acid-induced improvement in germination and growth parameters of wheat under salinity stress. The Journal of Animal & Plant Sciences, 28(1), 97-207.

Ferreira, D. F. (2011). Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia, 35(6), 1039-1042. DOI: 10.1590/S1413-70542011000600001

Grohs, M., Marchesan, E., Roso, R. & Moraes, B. S. (2016). Attenuation of low-temperature stress in rice seedlings. Pesquisa Agropecuária Tropical, 46(2), 197-205.

Hossain, M. A., Bhattacharjee, S., Armin, S. M., Qian, P., Xin, W., Li, H. W., … Tran, L. S. P. (2015). Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging. Frontiers in Plant Science, 6(1), 1-19. DOI: 10.3389/fpls.2015.00420

Javid, M. G., Sorooshzadeh, A., Moradi, F., Sanavy, S. A. M. M., & Allahdadi, I. (2011). The role of phytohormones in alleviating salt stress in crop plants. Australian Journal of Crop Science, 5(6), 726-734.

Jini, D., & Joseph, B. (2017). Physiological mechanism of salicylic acid for alleviation of salt stress in rice. Rice Science, 24(2), 97-108. DOI: 10.1016/j.rsci.2016.07.007

Maguire, J. D. (1962). Speed of germination aid in selection and evoluation for seedling and vigour. Crop Science, 2(2), 176-177. DOI: 10.2135/cropsci1962.0011183X000200020033x

Marcos-Filho, J. (2015). Fisiologia de sementes de plantas cultivadas (2a ed.). Londrina, PR: Abrates.

Marijuan, M. P., & Bosch, S. M. (2013). Ecophysiology of invasive plants: osmotic adjustment and antioxidants. Trends Plant Science, 18(12), 660-666. DOI: 10.1016/j.tplants.2013.08.006

Matias, J. R., Ribeiro, R. C., Aragão, C. A., Araújo, G. G. L., & Dantas, B.F. (2015). Physiological changes in osmo and hydroprimed cucumber seeds germinated in biosaline water. Journal of Seed Science, 37(1), 1-9. DOI: 10.1590/2317-1545v37n1135472

Mccue, P., Zheng, Z., Pinkham, J. L., & Shetty, K. (2000). A model for enhanced pea seedling vigour following low pH and salicylic acid treatments. Process Biochemistry, 53(6), 603- 613. DOI: 10.1016/S0032-9592(99)00111-9

Migliavacca, R. A., Silva, T. R. B., Vasconcelos, A. L. S., Mourão Filho, W., & Baptistella, J. L. C. (2014). O cultivo da chia no Brasil: futuro e perspectivas. Journal of Agronomic Sciences, 3(esp.), 161-179.

Ministério da Agricultura, Pecuária e Abastecimento [MAPA]. (2009). Regras para análise de sementes. Brasília, DF: MAPA/SDA.

Noriega, G., Caggiano, E., Lecube, M. L., Santa Cruz, D., Batle, A., Tomaro, M., & Balestrasse, K. B. (2012). The role of salicylic acid in the prevention of oxidative stress elicited by cadmium in soybean plants. Biometals, 25(6), 1155-1165. DOI: 10.1007/s10534-012-9577-z

Oliveira, F. A., Guedes, R. A. A., Gomes, L. P., Bezerra, F. M. S., Lima, L.A., & Oliveira, M. K. T. (2015). Interação entre salinidade e bioestimulante no crescimento inicial de pinhão-manso. Revista Brasileira de Engenharia Agrícola e Ambiental, 19(3), 204-210. DOI: 10.1590/1807-1929

Paiva, E. P., Torres, S. B., Alves, T. R. C., Sá, F. V. S., Leite, M. S., & Dombroski, J. L. D. (2018). Germination and biochemical components of Salvia hispanica L. seeds at different salinity levels and temperatures. Acta Scientiarum. Agronomy, 40(1), 3-7. DOI: 10.4025/actasciagron.v40i1.39396

Paiva, E. P., Torres, S. B., Sá, F. V. S., Nogueira, N. W., Freitas, R. M. O., & Leite, M. S. (2016). Light regime and temperature on seed germination in Salvia hispanica L. Acta Scientiarum. Agronomy, 38(4), 513-519. DOI: 10.4025/actasciagron.v38i4.30544

Pinedo, G. J. V., & Ferraz, I. D. K. (2008). Hidrocondicionamento de Parkia pendula [BENTH ex WALP]: sementes com dormência física de árvore da Amazônia. Revista Árvore, 32(1), 39-49. DOI: 10.1590/s0100-67622008000100006

Rosa, D. B. C. J., Soares, J. S., Moreno, L. B., Michels, G. S., Lemes, C. S. R., Scalon, S. P. Q., & Rosa, Y. B. C. J. (2015). Germinação de Salvia splendens L. submetida à salinidade. Advances in Ornamental Horticulture and Landscaping, 21(1), 105-112. DOI: 10.14295/rbho.v21i1.782

Sá, F. V. S., Nascimento, R., Pereira, M. O., Borges, V. E., Guimarães, R. F. B., Ramos, J. G., … Penha, J. L. (2017). Vigor and tolerance of cowpea (Vigna unguiculata) genotypes under salt stress. Bioscience Journal, 33(6), 1488-1494. DOI: 10.14393/BJ-v33n6a2017-37053

Saini, S., Sharma, I., Kaur, N., & Pati, P. K. (2013). Auxin: a master regulator in plant root development. Plant Cell Reports, 32(1), 741-757. DOI: 10.1007/s00299-013-1430-5

Shahid, M. A., Ashraf, M. Y., Pervez, M. A., Ahmad, R., Balal, R. M., & Garcia-Sanchez, F. (2013). Impact of salt stress on concentrations of Na+, Cl- and organic solutes concentration in pea cultivars. Pakistan Journal of Botany, 45(3), 755-761.

Shakirova, F. M., Sakhabutdinova, A. R., Bezrukova, M. V., Fatkhutdinova, R. A., & Fatkhutdinova, D. R. (2003). Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Science, 164(3), 317-322. DOI: 10.1016/S0168-9452(02)00415-6

Shu, K., Qi, Y., Chen, F., Meng, Y., Luo, X., Shuai, H., … Yang, W. (2017). Salt stress represses soybean seed germination by negatively regulating ga biosynthesis while positively mediating ABA biosynthesis. Frontiers in Plant Science, 8(1), 1-12. DOI: 10.3389/fpls.2017.01372

Singh, P. K., & Gautam, S. (2013). Role of salicylic acid on physiological and biochemical mechanism of salinity stress tolerance in plants. Acta Physiologiae Plantarum, 35(8), 2345-2353. DOI: 10.1007/s11738-013-1279-9

Stefanello, R., Neves, L. A. S., Abbad, M. A. B., & Viana, B. B. (2015). Resposta fisiológica de sementes de chia (Salvia hispanica- Lamiales: Lamiaceae) ao estresse salino. Biotemas, 28(4), 35-39.

DOI: 10.5007/2175-7925.2015v28n4p35

Taiz, L., Zeiger, E., Møller, I. M., & Murphy, A. (2015). Plant physiology and development (6th ed.). New York, NY: Sinauer Associates.

Tian, Y., Guan, B., Zhou, D., Yu, J., Li, G., & Lou, Y. (2014). Responses of seed germination, seedling growth, and seed yield traits to seed pretreatment in Maize (Zea mays L.). The Scientific World Journal, 2014(1), 1-8. DOI: 10.1155/2014/834630

Tsegay, B. A., & Andargie, M. (2018). Seed Priming with Gibberellic Acid (GA3) Alleviates Salinity Induced Inhibition of Germination and Seedling Growth of Zea mays L., Pisumsativum Var. abyssinicum A. Braun and Lathyrus sativus L. Journal of Crop Science and Biotechnology, 21(3), 261-267. DOI: 10.1007/s12892-018-0043-0

Turkyilmaz, B. (2012). Effects of salicylic and gibberellic acids on wheat (Triticum aestivum L.) under salinity stress. Journal of Botany, 41(1), 29-34. DOI: 10.3329/bjb.v41i1.11079

Yemm, E. W., & Willis, A. J. (1954). The estimation of carbohydrates in plant extracts by anthrone. Biochemical Journal, 57(3), 508-514. DOI: 10.1042/bj0570508

Yemm, E. W., Coccking, E. C., & Ricketts, R. E. (1955). The determination of amino acid with ninhydrin. Analyst, 80(2), 209-213. DOI: 10.1039/AN9558000209

Publicado
2021-07-05
Como Citar
Costa , A. A. da, Paiva, E. P. de, Torres , S. B., Pereira , K. T. de O., Leite , M. de S., & Sá , F. V. da S. (2021). Seed priming improves Salvia hispanica L. seed performance under salt stress. Acta Scientiarum. Agronomy, 43(1), e52006. https://doi.org/10.4025/actasciagron.v43i1.52006
Seção
Produção Vegetal

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus