Prediction of Italian ryegrass (Lolium multiflorum L.) emergence using soil thermal time
Resumo
Italian ryegrass (Lolium multiflorum L.) is a highly competitive weed widely disseminated worldwide that affects both summer and winter crops. The development of predictive emergence models can contribute to optimizing weed management. The aim of this study was to develop and validate an empirical emergence model of Italian ryegrass based on soil thermal time. For model development, cumulative emergence in two locations was obtained, and the model was validated with data collected in an experiment conducted independently. Three commonly used emergence models were compared (Gompertz, Logistic, and Weibull). The relationship between emergence and soil thermal time was described best by the Gompertz model. The Gompertz model predicted Italian ryegrass emergence start at 300 thermal time (TT), reaching 50% emergence at 444 TT, and 90% at 590 TT. Model validation performed well in predicting Italian ryegrass emergence and proved to be efficient at describing its emergence. This is a potential predictive tool for assisting farmers with Italian ryegrass management.
Downloads
Referências
Bond, J. A., Eubank, T. W., Bond, R. C., Golden, B. R., & Edwards, H. M. (2014). Glyphosate-resistant Italian ryegrass (Lolium perenne ssp. multiflorum) control with fall-applied residual herbicides. Weed Technology, 28(2), 361-370. DOI: 10.1614/WT-D-13-00149.1
Burnham, K. P., Anderson, D. R., & Huyvaert, K. P. (2011). AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behavioral Ecology and Sociobiology, 65(1), 23-35. DOI: 10.1007/s00265-010-1029-6
Çabej, N. (2012). Epigenetic principles of evolution. [S.l.]: Elsevier.
Dorado, J., Sousa, E., Calha, I. M., González-Andújar, J. L., & Fernández-Quintanilla, C. (2009). Predicting weed emergence in maize crops under two contrasting climatic conditions. Weed Research, 49(3), 251-260. DOI: 10.1111/j.1365-3180.2008.00690.x
Egley, G. H. (2017). Seed germination in soil: dormancy cycles. In J. Kigel, & G. Gad. (Ed.), Seed development and germination (p. 529-543). Boca Raton, FL: Routledge.
Ferreira, E. B., Cavalcanti, P. P., & Nogueira, D. A. (2018). ExpDes.pt: Pacote Experimental Designs (Portuguese). R package version 1.2.0, 2018. Retrieved from https://CRAN.R-project.org/package=ExpDes.pt
Gardarin, A., Dürr, C., & Colbach, N. (2012). Modeling the dynamics and emergence of a multispecies weed seed bank with species traits. Ecological Modelling, 240, 123-138. DOI: 10.1016/j.ecolmodel.2012.05.004
González-Andújar, J. L., Chantre, G. R., Morvillo, C., Blanco, A. M., & Forcella, F. (2016). Predicting field weed emergence with empirical models and soft computing techniques. Weed Research, 56(6), 415-423. DOI: 10.1111/wre.12223
González-Andújar, J. L., Fernández-Quintanilla, C., Bastida, F.; Calvo, R.; Gonzálezdíaz, L., Izquierdo, J., ... Urbano, J.M. (2010). Field evaluation of a decision support system for herbicidal control of Avena sterilis ssp. ludoviciana in winter wheat. Weed Research, 50(1), 83-88. DOI: 10.1111/j.1365-3180.2009.00744.x
Hadi, M. H. S., & Gonzalez-Andujar, J. L. (2009). Comparison of fitting weed seedling emergence models with nonlinear regression and genetic algorithm. Computers and Electronics in Agriculture, 65(1), 19-25. DOI: 10.1016/j.compag.2008.07.005
Ichihara, M., Yamashita, M., Sawada, H., Kida, Y., & Asai, M. (2009). Influence of after‐ripening environments on the germination characteristics and seed fate of Italian ryegrass (Lolium multiflorum). Weed Biology and Management, 9(3), 217-224. DOI: 10.1111/j.1445-6664.2009.00342.x
Izquierdo, J., Bastida, F., Lezaún, J. M., Sánchez del Arco, M. J., & Gonzalez‐Andujar, J. L. (2013). Development and evaluation of a model for predicting Lolium rigidum emergence in winter cereal crops in the Mediterranean area. Weed Research, 53(4), 269-278. DOI: 10.1111/wre.12023
Lewandrowski, W., Erickson, T. E., Dixon, K. W., & Stevens, J. C. (2017). Increasing the germination envelope under water stress improves seedling emergence in two dominant grass species across different pulse rainfall events. Journal of Applied Ecology, 54(3), 997-1007. DOI: 10.1111/1365-2664.12816
Loague, K., & Green, R. E. (1991). Statistical and graphical methods for evaluating solute transport models: overview and application. Journal of Contaminant Hydrology, 7(1-2), 51-73. DOI: 10.1016/0169-7722(91)90038-3
Maia, F. C., Maia, M. D. S., Bekker, R. M., Berton, R. P., & Caetano, L. S. (2008). Lolium multiflorum seeds in the soil: I. Soil seed bank dynamics in a no til system. Revista Brasileira de Sementes, 30(2), 100-110. DOI: 10.1590/S0101-31222008000200013
Masin, R., Loddo, D., Benvenuti, S., Otto, S., & Zanin, G. (2012). Modeling weed emergence in Italian maize fields. Weed Science, 60(2), 254-259. DOI: 10.1614/WS-D-11-00124.1
Myers, M. W., Curran, W. S., VanGessel, M. J., Calvin, D. D., Mortensen, D. A., Majek, B. A., ... & Roth, G. W. (2004). Predicting weed emergence for eight annual species in the northeastern United States. Weed Science, 52(6), 913-919. DOI: 10.1614/WS-04-025R
Nandula, V. K. (2014). Italian ryegrass (Lolium perenne ssp. multiflorum) and corn (Zea mays) competition. American Journal of Plant Sciences, 5(26), 3914. DOI: 10.4236/ajps.2014.526410
R Core Team (2018). The R Project for Statistical Computing. R: A language and environment for statistical computing. Retrieved from https://www.R-project.org/
Royo-Esnal, A., Necajeva, J., Torra, J., Recasens, J., & Gesch, R. W. (2015). Emergence of field pennycress (Thlaspi arvense L.): comparison of two accessions and modelling. Industrial Crops and Products, 66, 161-169. DOI: 10.1016/j.indcrop.2014.12.010
RStudio Team (2016). Rethink Reporting with Automation. RStudio: Integrated Development for RStudio. Retrieved from http://www.rstudio.com/
Scursoni, J. A., Palmano, M., De Notta, A., & Delfino, D. (2012). Italian ryegrass (Lolium multiflorum Lam.) density and N fertilization on wheat (Triticum aestivum L.) yield in Argentina. Crop protection, 32, 36-40. DOI: 10.1016/j.cropro.2011.11.002
Sistema Meteorológico do Paraná [Simepar]. (2019). Dados climáticos. Curitiba, PR. Retrieved from http://www.simepar.br/
Tozzi, E., Beckie, H., Weiss, R., Gonzalez‐Andujar, J. L., Storkey, J., Cici, S. Z. H., & Acker, R. C. van (2014). Seed germination response to temperature for a range of international populations of Conyza canadensis. Weed Research, 54(2), 178-185. DOI: 10.1111/wre.12065
Tribouillois, H., Dürr, C., Demilly, D., Wagner, M. H., & Justes, E. (2016). Determination of germination response to temperature and water potential for a wide range of cover crop species and related functional groups. PloS ONE, 11(8), e0161185. DOI: 10.1371/journal.pone.0161185
United States Department of Agriculture [USDA]. (2019). National Germplasm Resources Laboratory. Taxon: Lolium multiflorum Lam. U.S. National Plant Germplasm System. Agricultural Research Service. Germplasm Resources Information Network (GRIN-Taxonomy). Beltsville, MD. Retrieved from https://npgsweb.ars-grin.gov/gringlobal/taxonomydetail.aspx?id=22493
Wickham, H. (2016) ggplot2: elegant graphics for data analysis. New York, NY: Springer-Verlag.
Yang, J., Greenwood, D. J., Rowell, D. L., Wadsworth, G. A., & Burns, I. G. (2000). Statistical methods for evaluating a crop nitrogen simulation model, N_ABLE. Agricultural Systems, 64(1), 37-53. DOI: 10.1016/S0308-521X(00)00010-X
Yousefi, A. R., Oveisi, M., & Gonzalez-Andujar, J. L. (2014). Prediction of annual weed seed emergence in garlic (Allium sativum L.) using soil thermal time. Scientia Horticulturae, 168, 189-192. DOI: 10.1016/j.scienta.2014.01.035
Zambrano‐Navea, C., Bastida, F., & Gonzalez‐Andujar, J. L. (2013). A hydrothermal seedling emergence model for Conyza bonariensis. Weed Research, 53(3), 213-220. DOI: 10.1111/wre.12020
DECLARAÇÃO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.