Root distribution and its relations with soil chemical attributes and yield of banana under fertigation with and without soil covering
Resumo
This study evaluated the effects of fertigation, banana biomass as a soil covering under drip and micro-sprinkler irrigation system on the root growth and distribution and their relations with chemical soil attributes, soil water availability, and productivity. This work was conducted in a field with banana 2.5 × 2.0 m spacing and irrigated every two days using a drip and micro-sprinkler irrigation system during the first crop cycle. The experiment followed a random block design with six treatments, two irrigation systems, two fertilization methods of fertigation and side-dressing, as well as two cultivation types with and without soil covering. Roots were collected from each plot using soil monoliths and digitalization allowed the determination of root length density, and diameter at several distances from the plant and at different soil depths. Total root length, density, and distribution by diameter were evaluated based on the treatment interactions with respect to the distance from the plant and the soil depth. Our results showed that the combination of the irrigation system, fertilizer application and soil covering influenced root growth and distribution. In addition, we found that the better soil conditions for root growth were in drip or micro-sprinkler systems with fertigation and cultivated biomass covering.
Downloads
Referências
Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration: guidelines for computing crop water requirements. Rome, IT: FAO.
Bernardo, S., Soares, A. A., & Mantovani, E. C. (2006). Manual de irrigação (8a ed.). Viçosa, MG: UFV.
Böhm, W. (1979). Methods of studying root systems. Göttingen, DE: Springer-Verlag.
Borges, A. L., Coelho, E. F., Costa, E. L., & Teixeira, A. H. C. (2011b). Irrigação e fertirrigação na cultura da banana. In V. F. Sousa, W. A. Marouelli, E. F. Coelho, J. M. Pinto, & M. A. Coelho Filho (Eds.), Irrigação e fertirrigação em fruteiras e hortaliças (p. 369-398). Brasília, DF: Embrapa Informação Tecnológica.
Borges, R. S., Silva, S. O., Oliveira, F. T., & Roberto, S. R. (2011a). Avaliação de genótipos de bananeira no norte do Estado do Paraná. Revista Brasileira de Fruticultura, 33(1), 291-296. DOI: https://doi.org/10.1590/S0100-29452011005000034
Carr, M. K. V. (2009). The water relations and irrigation requirements of banana (Musa spp.). Experimental Agriculture, 45(3), 333-371. DOI: https://doi.org/10.1017/S001447970900787X
Chilundo, M., Joel, J., Wesström, I., Brito, R., & Messing, I. (2017). Response of maize root growth to irrigation and nitrogen management strategies in semi-arid loamy sandy soil. Field Crops Research, 200, 143-162. DOI: https://doi.org/10.1016/j.fcr.2016.10.005
Chilundo, M., Joel, J., Wesström, I., Brito, R., & Messing, I. (2018). Influence of irrigation and fertilisation management on the seasonal distribution of water and nitrogen in a semi-arid loamy sandy soil. Agricultural Water Management, 199, 120-137. DOI: https://doi.org/10.1016/j.agwat.2017.12.020
Coelho, E. F., Donato, S. L. R., Oliveira, P. M., & Cruz, A. J. S. (2012). Relações hídricas II: evapotranspiração e coeficientes de cultura. In E. F. Coelho (Ed.), Irrigação da bananeira (p. 85-118). Brasília, DF: Embrapa.
Coelho, E. F., Melo, D. M., Pereira, B. L. S., Santos, D. B., & Rosa, R. C. C. (2016). Roots of ‘BRS Princesa’ banana fertigated with humic substances and saponin-based plant extracts. Acta Scientiarum. Agronomy, 38(4), 521-528. DOI: https://doi.org/10.4025/actasciagron.v38i4.30790
Coelho, E. F., Silva, A. J. P., & Miranda, J. H. (2010). Definição do posicionamento de sensores para monitoramento da água no solo em bananeira irrigada por diferentes sistemas de irrigação localizada. Engenharia Agrícola, 30(4), 608-618. DOI: https://doi.org/10.1590/S0100-69162010000400005
Donato, S. L. R., Lédo, A. A., Pereira, M. C. T., Coelho, E. F., Cotrim, C. E., & Coelho Filho, M. A. (2010). Estado nutricional de bananeiras tipo Prata sob diferentes sistemas de irrigação. Pesquisa Agropecuária Brasileira, 45(9), 980-988. DOI: https://doi.org/10.1590/S0100-204X2010000900007
Doorenbos, J., & Pruitt, W. O. (1975). Guidelines for predicting crop water requirements. Roma, IT: FAO.
Fanish, S. A., & Muthukrishnan, P. (2013). Nutrient distribution under drip fertigation systems. World Journal of Agricultural Sciences, 9(3), 277-283. DOI: https://doi.org/10.5829/idosi.wjas.2013.9.3.2941
Gasparim, E., Ricieri, R. P., Silva, S. L., Dallacort, R., & Gnoatto, E. (2008). Temperatura no perfil do solo utilizando duas densidades de cobertura e solo nu. Acta Scientiarum. Agronomy, 27(1), 107-115. DOI: https://doi.org/10.4025/actasciagron.v27i1.2127
Jensen, M. E. (2007). Sustainable and productive irrigated agriculture (2nd ed.). In G. J. Hoffman, R. G. Evans, M. E. Jensen, D. L. Martin, & R. L. Elliott (Eds.), Design and operation of farm irrigation systems (p. 33-56). Saint Joseph, DM: American Society of Agricultural Engineers.
Kapoor, R., Sandal, S. K., & Banyal, A. (2017). Response of drip irrigation, fertigation and mulching in fruit crops for enhanced quality attributes and productivity - a review. Progressive Research – An International Journal, 12(1), 1-6.
Kaspar, T. C., & Ewing, R. P. (1997). Rootedge: software for measuring root length from desktop scanner images. Agronomy Journal, 89(6), 932-940. DOI: https://doi.org/10.2134/agronj1997.00021962008900060014x
Kitomi, Y., Itoh, J.-I., & Uga, Y. (2018). Genetic mechanisms involved in the formation of root system architecture. In T. Sasaki & M. Ashikari (Eds.), Rice genomics, genetics and breeding (p. 241-274). Metro Manila, Philippines, SG: Springer.
Koshima, F. A. T., Ming, L. C., & Marques, M. O. M. (2006). Produção de biomassa, rendimento de óleo essencial e de citral em capim-limão, Cymbopogon citratus (DC.) Stapf, com cobertura morta nas estações do ano. Revista Brasileira de Plantas Medicinais, 8(4), 112-116.
Kosterna, E. (2014). The effect of different types of straw mulches on weed-control in vegetables cultivation. Journal of Ecological Engineering, 15(4), 109-117. DOI: https://doi.org/10.12911/22998993.1125465
Koumanov, K. S., Hopmans, J. W., & Schwankl, L. W. (2006). Spatial and temporal distribution of root water uptake of an almond tree under microsprinkler irrigation. Irrigation Science, 24(4), 267-278. DOI: https://doi.org/10.1007/s00271-005-0027-3
Lecompte, F., Pagès, L., & Ozier-Lafontaine, H. (2005). Patterns of variability in the diameter of lateral roots in the banana root system. New Phytologist, 167(3), 841-850. DOI: https://doi.org/10.1111/j.1469-8137.2005.01457.x
Mahgoub, N. A., Mohamed, A. I., El Sikhary, E. S. M., & Ali, O. M. (2017). Roots and nutrient distribution under drip irrigation and yield of faba bean and onion. Open Journal of Soil Science, 7(2), 52-67. DOI: https://doi.org/10.4236/ojss.2017.72004
McIntyre, B., Gold, C., Kashaija, I., Ssali, H., Night, G., & Bwamiki, D. (2001). Effects of legume intercrops on soil-borne pests, biomass, nutrients and soil water in banana. Biology and Fertility of Soils, 34(5),
-348. DOI: https://doi.org/10.1007/s003740100417
Neilsen, G. H., Parchomchuk, P., Neilsen, D., & Zebarth, B. J. (2000). Drip-fertigation of apple trees affects root distribution and development of K deficiency. Canadian Journal of Soil Science, 80(2), 353-361. DOI: https://doi.org/10.4141/S99-090
Pérez-Castro, A., Sánchez-Molina, J. A., Castilla, M., Sánchez-Moreno, J., Moreno-Úbeda, J. C., & Magán, J. J. (2017). cFertigUAL: A fertigation management app for greenhouse vegetable crops. Agricultural Water Management, 183(C), 186-193. DOI: https://doi.org/10.1016/j.agwat.2016.09.013
Pisciotta, A., Lorenzo, R., Santalucia, G., & Barbagallo, M. G. (2018). Response of grapevine (Cabernet Sauvignon cv) to above ground and subsurface drip irrigation under arid conditions. Agricultural Water Management, 197, 122-131. DOI: https://doi.org/10.1016/j.agwat.2017.11.013
Rimcharoen, Y., & Wonprasaid, S. (2016). Effects of fertigation on root and plant nutrient distribution of field grown tomato (Lycopersicon esculentum Mill.). International Journal of Research in Chemical, Metallurgical and Civil Engineering, 3(2), 199-203. DOI: https://doi.org/10.15242/IJRCMCE.IAE0716408
Sandal, S. K., & Kapoor, R. (2015). Fertigation technology for enhancing nutrient use and crop productivity: an overview. Himachal Journal of Agricultural Research, 41(2), 114-121.
Sant’Ana, J. A. V., Coelho, E. F., Faria, M. A., Silva, E. L., & Donato, S. L. R. (2012). Distribuição de raízes de bananeira ‘prata-anã’ no segundo ciclo de produção sob três sistemas de irrigação. Revista Brasileira de Fruticultura, 34(1), 124-133. DOI: https://doi.org/10.1590/S0100-29452012000100018
Santana Junior, E. B., Coelho, E. F., Cruz, J. L., Reis, J. B. R. S., Mello, D. M., & Pereira, B. L. S. (2020). Trickle irrigation systems affect spatial distribution of roots of banana crop. Revista Brasileira de Engenharia Agrícola e Ambiental, 24(5), 325-331. DOI: https://doi.org/10.1590/1807-1929/agriambi.v24n5p325-331
Santos, M. R., Lourenco, L. L., Donato, S. L. R., Silva, B. L., Castro, I. N., & Coelho Filho, M. A. (2016). Root system distribution and vegetative characteristics of Prata type bananas under different irrigation strategies. African Journal of Agricultural Research, 11(39), 3806-3815. DOI: https://doi.org/10.5897/AJAR2016.11556
Senthilkumar, M., Ganesh, S., Srinivas, K., Panneerselvam, P., Nagaraja, A., & Kasinath, B. L. (2017). Fertigation for effective nutrition and higher productivity in banana - a review. International Journal of Current Microbiology and Applied Sciences, 6(7), 2104-2122. DOI: https://doi.org/10.20546/ijcmas.2017.607.248
Štursová, M., & Baldrian, P. (2011). Effects of soil properties and management on the activity of soil organic matter transforming enzymes and the quantification of soil-bound and free activity. Plant and Soil, 338(1), 99-110. DOI: https://doi.org/10.1007/s11104-010-0296-3
Teixeira, L. A. J., Quaggio, J. A., & Mellis, E. V. (2011). Ganhos de eficiência fertilizante em bananeira sob irrigação e fertirrigação. Revista Brasileira de Fruticultura, 33(1), 272-278. DOI: https://doi.org/10.1590/S0100-29452011005000030
Tindall, J. A., Mills, H. A., & Radcliffe, D. E. (2008). The effect of root zone temperature on nutrient uptake of tomato. Journal of Plant Nutrition, 13(8), 939-956. DOI: https://doi.org/10.1080/01904169009364127
Tiquia, S. M., Lloyd, J., Herms, D. A., Hoitink, H. A. J., & Michel Jr., F. C. (2002). Effects of mulching and fertilization on soil nutrients, microbial activity and rhizosphere bacterial community structure determined by analysis of TRFLPs of PCR-amplified 16S rRNA genes. Applied Soil Ecology, 21(1), 31-48. DOI: https://doi.org/10.1016/S0929-1393(02)00040-9
Wu, W., Ma, B.-L., & Whalen, J. K. (2018). Chapter three - enhancing rapeseed tolerance to heat and drought stresses in a changing climate: perspectives for stress adaptation from root system architecture. Advances in Agronomy, 151, 87-157. DOI: https://doi.org/10.1016/bs.agron.2018.05.002
DECLARAÇÃO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.