Interaction between increased CO2 and temperature enhance plant growth but do not affect millet grain production
Resumo
The intergovernmental panel on climate change predicts a progressive increase in atmospheric CO2 concentration and temperature; however, their effects on cereals have been shown for a limited number of species. This study evaluates the effects of increased CO2 concentration and temperature separately and combined on millet growth and grain production in open-top chambers where the microclimate was adjusted to the following conditions: ambient CO2 and temperature; CO2 enriched (~ 800 ppm) and ambient temperature; ambient CO2 and higher temperature (+3ºC); and CO2-enriched and higher temperature. For each treatment, two chambers were used, each containing 15 7 L pots. Each pot received five seeds at the beginning of the experiment and thinning to one plant per pot at 15 days after sowing. Ten plants were harvested from each chamber 65 days after sowing and the plant height, the number of leaves and the longest root length as well as shoot and root biomass were measured. The remaining plants were harvested 130 days after sowing to evaluate grain production. The results indicate that high CO2 levels did not affect plant growth and biomass. On the other hand, plants subjected to high temperature grew 7% taller than those grown under ambient temperature. Contrastingly, plants submitted to both elevated CO2 and temperature were 19% taller and had 22% more shoot biomass than plants under ambient CO2 and temperature. However, grain production did not change in any of the environmental conditions. We provide evidence that millets are tolerant of the predicted climate changes and that grain production potential may not be affected.
Downloads
Referências
Aidar, M. P. M., Martinez, C. A., Costa, A. C., Costa, P. M. F., Dietrich, S. M. C., & Buckeridge, M. S. (2002). Effect of atmospheric CO2 enrichment on the establishment of seedlings of Jatobá, Hymenaea Courbaril L. (Leguminosae, Caesalpinioideae). Biota Neotropica, 2(1), 1-10. DOI: https://doi.org/10.1590/S1676-06032002000100008
Barnaby, J. Y., & Ziska, L. H. (2012). Plant responses to elevated CO2. In eLS (p. 1-10). Chichester, EN: John Wiley & Sons, Ltd.
Bezançon, G., Pham, J.-L., Deu, M., Vigouroux, Y., Sagnard, F., Mariac, C., ... Chantereau, J. (2009). Changes in the diversity and geographic distribution of cultivated millet (Pennisetum glaucum (L.) R. Br.) and sorghum (Sorghum bicolor (L.) Moench) varieties in Niger between 1976 and 2003. Genetic Resources and Crop Evolution, 56(2), 223-236. DOI: https://doi.org/10.1007/s10722-008-9357-3
Bishop, K. A., Betzelberger, A. M., Long, S. P., & Ainsworth, E. A. (2014). Is there potential to adapt soybean (Glycine max Merr.) to future [CO2]? An analysis of the yield response of 18 genotypes in free-air CO2 enrichment. Plant, Cell & Environment, 38(9), 1765-1774. DOI: https://doi.org/10.1111/pce.12443
Bordignon, L., Faria, A. P., França, M. G. C., & Fernandes, G. W. (2019). Osmotic stress at membrane level and photosystem II activity in two C4 plants after growth in elevated CO2 and temperature. Annals of Applied Biology, 174(2), 113-122. DOI: https://doi.org/10.1111/aab.12483
Crawley, M. J. (2013). The R book. New York, NY: John Wiley & Sons.
Dwyer, S. A., Ghannoum, O., Nicotra, A., & von Caemmerer, S. (2007). High temperature acclimation of C4 photosynthesis is linked to changes in photosynthetic biochemistry. Plant, Cell & Environment, 30(1), 53-66. DOI: https://doi.org/10.1111/j.1365-3040.2006.01605.x
Edwards, G., & Walker, D. A. (1983). C3, C4. mechanisms, and cellular and environmental regulation, of photosynthesis. Los Angeles, CA: University of California Press.
Ehleringer, J. R., Cerling, T. E., & Helliker, B. R. (1997). C4 photosynthesis, atmospheric CO2, and climate. Oecologia, 112, 285-299. DOI: https://doi.org/10.1007/s004420050311
Faria, A. P., Marabesi, M. A., Gaspar, M., & França, M. G. C. (2018). The increase of current atmospheric CO2 and temperature can benefit leaf gas exchanges, carbohydrate content and growth in C4 grass invaders of the Cerrado biome. Plant Physiology and Biochemistry, 127, 608-616. DOI: https://doi.org/10.1016/j.plaphy.2018.04.042
Friend, A. D. (2010). Terrestrial plant production and climate change. Journal Experimental Botany, 61(5), 1293-1309. DOI: https://doi.org/10.1093/jxb/erq019
Gassen, D. N., & Gassen, F. R. (1996). Plantio direto: o caminho do futuro. Passo Fundo, RS: Aldeia Sul.
Gray, S. B., & Brady, S. M. (2016). Plant developmental responses to climate change. Developmental Biology, 419(1), 64-77. DOI: https://doi.org/10.1016/j.ydbio.2016.07.023
Hatfield, J. L., & Prueger, J. H. (2015). Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes, 10(Part A), 4-10. DOI: https://doi.org/10.1016/j.wace.2015.08.001
Hatfield, J. L., Boote, K. J., Kimball, B. A., Ziska, L. H., Izaurralde, R. C., Ort, D., … Wolfe, D. (2011). Climate impacts on agriculture: implications for crop production. Agronomy Journal, 103(2), 351-370. DOI: https://doi.org/10.2134/agronj2010.0303
Hoagland, D. R., & Arnon, D. I. (1950). The water-culture method for growing plants without soil. Berkeley, CA: California Agricultural Experiment Station.
Intergovernmental Panel on Climate Change [IPCC]. (2013). Summary for policymakers. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, … P. M. Midgley (Eds.), Climate change 2013: the physical science basis. contribution of working group i to the fifth assessment report of the intergovernmental panel on climate change (p. 1-30). New York, NY: Cambridge University Press.
Intergovernmental Panel on Climate Change [IPCC]. (2014). Climate change 2014: synthesis report. contribution of working groups i, ii and iii to the fifth assessment report of the intergovernmental panel on climate change. Switzerland, CH: IPCC.
Lanzanova, M. E., Nicoloso, R. S., Lovato, T., Eltz, F. L. F., Amado, T. J. C., & Reinert, D. J. (2007). Atributos físicos do solo em sistema de integração lavoura-pecuária sob plantio direto. Revista Brasileira de Ciência do Solo, 31(5), 1131-1140. DOI: https://doi.org/ 10.1590/S0100-06832007000500028
Leakey, A. D. B. (2009). Rising atmospheric carbon dioxide concentration and the future of C4 crops for food and fuel. Proceedings of the Royal Society Biological Sciences, 276(1666), 2333-2343. DOI: https://doi.org/10.1098/rspb.2008.1517
Leakey, A. D. B., Uribelarrea, M., Ainsworth, E. A., Naidu, S. L., Rogers, A., Ort, D. R., & Long, S. P. (2006). Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought. Plant Physiology, 140(2), 779-790. DOI: https://doi.org/10.1104/pp.105.073957
Liang, J., Xia, J., Liu, L., & Wan, S. (2013). Global patterns of the responses of leaf-level photosynthesis and respiration in terrestrial plants to experimental warming. Journal of Plant Ecology, 6(6), 437-447. DOI: https://doi.org/10.1093/jpe/rtt003
Martinez, C. A., Oliveira, E. A. D., Mello, T. R. P., & Alzate-Marin, A. L. (2015). Respostas das plantas ao incremento atmosférico de dióxido de carbono e da temperatura. Revista Brasileira de Geografia Física, 8(esp.), 635-650. DOI: https://doi.org/10.26848/rbgf.v8.0.p635-650
McGraw, J. B., & Garbutt, K. (1990). The analysis of plant growth in ecological and evolutionary studies. Trends in Ecology & Evolution, 5(8), 251-254. DOI: https://doi.org/10.1016/0169-5347(90)90065-L
Pereira Filho, I. A., Ferreira, A. S., Coelho, A. M., Casela, C. R., Karam, D., Rodrigues, J. A. S., ... Waquil, J. M. (2003). Manejo da cultura do milheto. Sete Lagoas, MG: Embrapa Milho e Sorgo.
R Core Team. (2018). R: a language and environment for statistical computing. Vienna, AT: R Foundation for Statistical Computing.
Rosolem, C. A., Calonego, J. C., & Foloni, J. S. S. (2005). Potassium leaching from millet straw as affected by rainfall and potassium rates. Communications in Soil Science and Plant Analysis, 36(7-8), 1063-1074. DOI: https://doi.org/10.1081/CSS-200050497
Ruiz-Vera, U. M., Siebers, M. H., Drag, D. W., Ort, D. R., & Bernacchi, C. J. (2015). Canopy warming caused photosynthetic acclimation and reduced seed yield in maize grown at ambient and elevated [CO2]. Global Change Biology, 21(11), 4237-4249. DOI: https://doi.org/10.1111/gcb.13013
Sá, C. E. M., Negreiros, D., Fernandes, G. W., Dias, M. C., & Franco, A. C. (2014). Carbon dioxide-enriched atmosphere enhances biomass accumulation and meristem production in the pioneer shrub Baccharis dracunculifolia (Asteraceae). Acta Botanica Brasilica, 28(4), 646-650. DOI: https://doi.org/10.1590/0102-33062014abb3329
Sage, R. F., & Kubien, D. S. (2003). Quo vadis C4? An ecophysiological perspective on global change and the future of C4 plants. Photosynthesis Research, 77(2-3), 209-225. DOI: https://doi.org/10.1023/A:1025882003661
Sage, R. F., & Kubien, D. S. (2007). The temperature response of C3 and C4 photosynthesis. Plant, Cell & Environment, 30(9), 1086-1106. DOI: https://doi.org/10.1111/j.1365-3040.2007.01682.x
Schlenker, W., & Roberts, M. J. (2009). Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proceedings of the National Academy of Sciences, 106(37), 15594-15598. DOI: https://doi.org/10.1073/pnas.0906865106
Shine, K. P., Fuglestvedt, J. S., Hailemariam, K., & Stuber, N. (2005). Alternatives to the global warming potential for comparing climate impacts of emissions of greenhouse gases. Climatic Change, 68, 281-302. DOI: https://doi.org/10.1007/s10584-005-1146-9
Streck, N. A. (2005). Climate change and agroecosystems: the effect of elevated atmospheric CO2 and temperature on crop growth, development, and yield. Ciência Rural, 35(3), 730-740. DOI: https://doi.org/10.1590/S0103-84782005000300041
Vu, J. C. V., & Allen Jr., L. H. (2009). Stem juice production of the C4 sugarcane (Saccharum officinarum) is enhanced by growth at double-ambient CO2 and high temperature. Journal of Plant Physiology, 166(11), 1141-1151. DOI: https://doi.org/10.1016/j.jplph.2009.01.003
Vu, J. C. V., Allen Jr., L. H., & Gesch, R. W. (2006). Up-regulation of photosynthesis and sucrose metabolism enzymes in young expanding leaves of sugarcane under elevated growth CO2. Plant Science, 171(1), 123-131. DOI: https://doi.org/10.1016/j.plantsci.2006.03.003
World Meteorological Organization [WMO]. (2017). WMO greenhouse gas bulletin (GHG Bulletin) - No.13: The state of greenhouse gases in the atmosphere based on global observations through 2016. Geneva, CH: WMO.
Yadav, O. P., & Rai, K. N. (2013). Genetic improvement of pearl millet in India. Agricultural Research, 2, 275-292. DOI: https://doi.org/10.1007/s40003-013-0089-z
Yamori, W., Hikosaka, K., & Way, D. A. (2014). Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation. Photosynthesis Research, 119, 101-117. DOI: https://doi.org/10.1007/s11120-013-9874-6
DECLARAÇÃO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.