Sorghum seed coating with zinc: Physiological quality and initial performance of plants

  • Vanessa Aparecida Pereira Batista Universidade Estadual do Norte Fluminense Darcy Ribeiro https://orcid.org/0000-0001-6451-9758
  • Henrique Duarte Vieira Universidade Estadual do Norte Fluminense Darcy Ribeiro
  • José Inácio Coelho Pires Universidade Estadual do Norte Fluminense Darcy Ribeiro
  • Amanda Justino Acha Universidade Estadual do Norte Fluminense Darcy Ribeiro
Palavras-chave: Sorghum bicolor; micronutrients; dry matter; ICPE-9000; Groundeye®.

Resumo

Sorghum (Sorghum bicolor) is highly sensitive to zinc deficiency in soils, which results in decreased productivity and low-quality agricultural products. Our objective was to evaluate the effects of different zinc doses, applied to seeds, on the physiological quality and initial performance of sorghum plants. Six doses (0, 3.5, 7.0, 14.0, 21.0, and 28.0 g kg-1 seeds) were used and an uncoated control. The Zn coating process used dolomitic limestone as the filler and glue. Laboratory tests were conducted in a completely randomized design and greenhouse experiments were conducted in a randomized block design. The control means were 8, 9, and 14% lower than the maximum, minimum, and total seed area of treatments, respectively, relative to that of treatments. The control differed from other treatments by 10.47 in the speed index of emergence. Zinc at a dose of 28 g kg-1 seeds provided greater production of aerial dry matter, with nutrient content of 75.85 mg kg-1. Zinc on sorghum seeds affected length and dry matter production of aerial parts and roots but did not affect physical characteristics, germination, or emergence time. Applied zinc accumulated mainly in the roots, and promotes changes in Ca and Mg in seeds and other plant parts.

Downloads

Não há dados estatísticos.

Referências

Acha, A. J., Vieira, H. D., & Freitas, M. S. M. (2016). Perennial soybean seeds coated with high doses of boron and zinc. African Journal of Biotechnology, 15(37), 1998-2005. DOI: https://doi.org/10.5897/AJB2016.15560

Acha, A. J., Vieira, H. D., Souza, C. L. M., & Silva, F. W. A. (2018). Methodology of applying different doses of boron and zinc in the coating of perennial soybean seeds. Journal of Experimental Agriculture International, 26(5), 1-9. DOI: https://doi.org/10.9734/JEAI/2018/43968

Borges, I. D., Franco, A. A. N., Kondo, M. K., Martins, D. C., Teixeira, E. C., & Moreira, S. G. (2016). Acúmulo de macronutrientes na cultura do sorgo granífero na safrinha. Revista Brasileira de Milho e Sorgo, 15(2), 294-304. DOI: http://dx.doi.org/10.18512/1980-6477/rbms.v15n2p294-304

Brasil. (2009). Regras para análise de sementes. Brasília, DF: Mapa/ACS.

Cakmak, I. (2005). Effect of micronutrients on seed quality. In C. J. Li, F.-S. Zhang, A. Doberman, P. Hinsinger, H. Lambers, X. L. Li, … Y.-G. Zhu (Eds.), Plant nutrition for food security, human health and environmental protec-tion (p. 34-35). Beijing, CN: Tsinghua University Press.

Diniz, G. M. M., Batista, R. O., Borges, I. D., & Silveira, H. M. (2018). Período anterior à interferência de plantas daninhas em sorgo granífero e forrageiro. Revista Brasileira de Milho e Sorgo, 15(3), 470-480.

Funguetto, C. I., Pinto, J. F., Baudet, L., & Peske, S. T. (2010). Desempenho de sementes de arroz irrigado reco-bertas com zinco. Revista Brasileira de Sementes, 32(2), 117-123. DOI: https://doi.org/10.1590/S0101-31222010000200014

Furlani, Â. M. C., Furlani, P. R., Meda, A. R., & Duarte, A. P. (2005). Eficiência de cultivares de milho na absorção e utilização de zinco. Scientia Agricola, 62(3), 264-273. DOI: https://doi.org/10.1590/S0103-90162005000300010

Lemes, E. S., Mendonça, A. O., Dias, L. W., Brunes, A. P., Oliveira, S., Fin, S. S., & Meneghello, G. E. (2017). Tra-tamento de sementes de soja com zinco: efeito na qualidade fisiológica e produtividade. Colloquium Agrari-ae, 13(2), 76-86. DOI: https://doi.org/10.5747/ca.2017.v13.n2.a162

Lockman, R. B. (1972). Mineral composition of grain sorghum plant samples. Communications in Soil Science and Plant Analysis, 3(4), 295-303. DOI: https://doi.org/10.1080/00103627209366379

Longnecker, N. E., & Robson, A. D. (1993). Distribution and transport of zinc in plants. In A. D. Robson (Ed.), Zinc in soils and plants (p. 79-91). Dordrecht, NL: Springer.

Maguire, J. D. (1962). Speed of germination-aid in selection and evaluation for seedling emergence and vigor. Crop Science, 2(2), 176-177.

Marcos-Filho, J. (2016). Seed physiology of cultivated plants (2nd ed.). Londrina, PR: ABRATES.

Marschner, P. (2012). Mineral nutrition of higher plants (3rd ed.). Oxford, GB: Elsevier.

Prado, R. M., & Mouro, M. C. (2007). Fontes de zinco aplicado em sementes de sorgo cv. BRS 310 e o crescimen-to inicial. Semina: Ciências Agrárias, 28(3), 355-364. DOI: http://dx.doi.org/10.5433/1679-0359.2007v28n3p355

Rashid, A., & Fox, R. L. (1992). Evaluating internal zinc requirements of grain crops by seed analysis. Agronomy Journal, 84(3), 469-474. DOI: https://doi.org/10.2134/agronj1992.00021962008400030022x

Ribas, P. M. (2014). Origem e importância econômica. In A. Borém, L. D. Pimentel, & R. Parrela (Eds.), Sorgo: do plantio à colheita (p. 9-36). Viçosa, MG: UFV.

Romualdo, L. M., & Rozane, D. E. (2008). Aplicação de zinco em sementes de sorgo cv. BRS 304: efeitos na nu-trição e no crescimento inicial. Acta Scientiarum. Agronomy, 30(4), 471-478. DOI: https://doi.org/10.4025/actasciagron.v30i4.5300

Rozane, D. E., Prado, R. M., Romualdo, L. M., & Simões, R. R. (2008). Resposta de plântulas de arroz cv. BRS-Soberana à aplicação de zinco via semente. Ciência e Agrotecnologia, 32(3), 847-854. DOI: https://doi.org/10.1590/S1413-70542008000300022

Sadeghzadeh, B. (2013). A review of zinc nutrition and plant breeding. Journal of Soil Science and Plant Nutrition, 13(4), 905-927. DOI: http://dx.doi.org/10.4067/S0718-95162013005000072

Silva, F. W. A., Vieira, H. D., Baroni, D. F., Maitan, M. Q., & Acha, A. J. (2017). Germination performance of Campo Grande (Stylosanthes capitata / macrocephala) Stylers seeds coated with different layers of inert material. Journal of Experimental Agriculture International, 18(4), 1-8. DOI: https://doi.org/10.9734/JEAI/2017/36768

Slaton, N. A., Wilson, C. E., Ntamatungiro, S., Norman, R. J., & Boothe, D. L. (2001). Evaluation of zinc seed treatments for rice. Agronomy Journal, 93(1), 152-157. DOI: https://doi.org/10.2134/agronj2001.931152x

Tavares, L. C., Brunes, A. P., Rufino, C. A., Fonseca, D. Â. R., Gadotti, G. I., & Villela, F. A. (2015). Tratamento de sementes de cevada com zinco: potencial fisiológico e produtividade de sementes. Semina: Ciências Agrárias, 36(2), 585-594. DOI: http://dx.doi.org/10.5433/1679-0359.2015v36n2p585

Wang, J., & Evangelou, V. P. (1994). Metal tolerance aspects of plant cell wall and vacuole. In M. Pessarakli (Ed.), Handbook of plant and crop physiology (p. 695-717). Tucson, AZ: University of Arizona.

Xavier, P. B., Vieira, H. D., & Guimarães, C. P. (2015). Physiological potential of stylosanthes cv. Campo Grande seeds coated with different materials. Journal of Seed Science, 37(2), 117-124. DOI: https://doi.org/10.1590/2317-1545v37n2145982

Yagi, R., Simili, F. F., Araújo, J. C., Prado, R. M., Sanchez, S. V., Ribeiro, C. E. R., & Barretto, V. C. M. (2006). Aplicação de zinco via sementes e seu efeito na germinação, nutrição e desenvolvimento inicial do sorgo. Pesquisa Agropecuária Brasileira, 41(4), 655-660. DOI: https://doi.org/10.1590/S0100-204X2006000400016

Publicado
2022-03-09
Como Citar
Batista, V. A. P., Vieira, H. D., Pires, J. I. C., & Acha, A. J. (2022). Sorghum seed coating with zinc: Physiological quality and initial performance of plants. Acta Scientiarum. Agronomy, 44(1), e53803. https://doi.org/10.4025/actasciagron.v44i1.53803
Seção
Produção Vegetal

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus