Genotype selection based on multiple traits in cotton crops: The application of genotype by yield*trait biplot

  • Marco Antônio Peixoto Universidade Federal de Viçosa https://orcid.org/0000-0003-0564-7068
  • Jeniffer Santana Pinto Coelho Evangelista Universidade Federal de Viçosa
  • Igor Ferreira Coelho Universidade Federal de Viçosa
  • Luiz Paulo Carvalho Empresa Brasileira de Pesquisa Agropecuária
  • Francisco José Correa Farias Empresa Brasileira de Pesquisa Agropecuária
  • Paulo Eduardo Teodoro Universidade Federal de Mato Grosso do Sul
  • Leonardo Lopes Bhering Universidade Federal de Viçosa https://orcid.org/0000-0002-6072-0996
Palavras-chave: biplot analysis; genotype by trait (GT) analysis; multi-environmental trial; residual error variance.

Resumo

In cotton crops, the cotton seed yield significantly contributes with the success of any cultivar. However, other traits are considered when an ideotype is pointed out in the selection, such as the fiber quality traits. The aim of this study was to applied genotype by yield*trait (GYT) biplot to a multi-environment trial data of cotton genotypes and selected the best genotypes. For this end, thirteen genotypes from nineteen trials were assessed. Seven traits were evaluated [cotton seed yield (SY), fiber percentage (FP), fiber length (FL), fiber uniformity (FU), short fiber index (SFI), fiber strength (FS), and elongation (EL)] and residual error variances structures [identity variance (IDV) and diagonal (Diag)] were tested by bayesian information criterion. After, the REML/BLUP approach was applied to predict the genetic values of each trait and the selective accuracy were measured from the prediction. Then, the GYT-biplot were applied to the data. For SP and SFI traits, the model with Diag residual variance was indicated, whereas for SY FL, FU, FS, and EL traits the model with IDV residual variance demonstrated the best fit to the data. Values of accuracy were higher than 0.9 for all traits analyzed. In the GYT-biplot acute angles were find for all traits relations, which means high correlation between the yield*traits combination. Besides that, the correlation still can be seen in the GYT-biplot, as shown by the magnitudes of the angles between the pairs Yield*FU-Yield*FS and Yield*FS-Yield*EL. Also, the GYT-biplot indicates the genotype G4 with the best performance for Yield*FS, Yield*SFI, Yield*FU, Yield*FL, and Yield*FP combined. The genotypes G4, G1, G13, G8, and G9 represent those genotypes with yield advantage over the other cultivars. Then, the genotype G4 combines all desirable characteristics and demonstrate have large potential in the cotton breeding. The GYT approach were valuable and were highly recommended in cotton breeding programs for selection purpose in a multivariate scenario.

Downloads

Não há dados estatísticos.

Referências

Akinwale, R. O., Fakorede, M. A. B., Badu-Apraku, B., & Oluwaranti, A. (2014). Assessing the usefulness of GGE biplot as a statistical tool for plant breeders and agronomists. Cereal Research Communications, 42(3), 534-546. DOI: https://doi.org/10.1556/crc.42.2014.3.16

Cruz, C. D., Regazzi, A. J., & Carneiro, P. C. S. (2012). Modelos biométricos aplicados ao melhoramento genético. Viçosa, MG: UFV.

D’Eeckenbrugge, G. C., & Lacape, J.-M. (2014). Distribution and differentiation of wild, feral, and cultivated populations of perennial upland cotton (Gossypium hirsutum L.) in Mesoamerica and the Caribbean. PLoS One, 9(9), e107458. DOI: https://doi.org/10.1371/journal.pone.0107458

Gilmour, A. R., Gogel, B. J., Cullis, B. R., Welham, S. J., & Thompson, R. (2015). ASReml user guide release 4.1. Functional specification. Hemel Hempstead, GB: VSN International Ltd.

Henderson, C. R. (1975). Best linear unbiased estimation and prediction under a selection model. Biometrics, 31(2), 423-447. DOI: https://doi.org/10.2307/2529430

Kendal, E. (2019). Comparing durum wheat cultivars by genotype × yield × trait and genotype × trait biplot method. Chilean Journal of Agricultural Research, 79(4), 512-522. DOI: http://dx.doi.org/10.4067/S0718-58392019000400512

Li, Y., Suontama, M., Burdon, R. D., & Dungey, H. S. (2017). Genotype by environment interactions in forest tree breeding: review of methodology and perspectives on research and application. Tree Genetics & Genomes, 13(60), 1-18. DOI: https://doi.org/10.1007/s11295-017-1144-x

Malosetti, M., Ribaut, J.-M., & van Eeuwijk, F. A. (2013). The statistical analysis of multi-environment data: modeling genotype-by-environment interaction and its genetic basis. Frontiers in Physiology, 4, 44. DOI: https://doi.org/10.3389/fphys.2013.00044

Melo, V. L., Marçal, T. S., Rocha, J. R. A. S. C., Anjos, R. S. R., Carneiro, P. C. S., & Carneiro, J. E. S. (2020). Modeling (co)variance structures for genetic and non-genetic effects in the selection of common bean progenies. Euphytica, 216(5), 77. DOI: https://doi.org/10.1007/s10681-020-02607-9

Merrick, L. F., Glover, K. D., Yabwalo, D., & Byamukama, E. (2020). Use of Genotype by Yield*Trait (GYT) analysis to select hard red spring wheat with elevated performance for agronomic and disease resistance traits. Crop Breeding, Genetics and Genomics, 2(2), e200009. DOI: https://doi.org/10.20900/cbgg20200009

Oliveira, T. R. A., Gravina, G. A., Oliveira, G. H. F., Araújo, K. C., Araújo, L. C., Daher, R. F., ... Cruz, D. P. (2018). The GT biplot analysis of green bean traits. Ciência Rural, 48(6), e20170757. DOI: https://doi.org/10.1590/0103-8478cr20170757

Patterson, H. D., & Thompson, R. (1971). Recovery of inter-block information when block sizes are unequal. Biometrika, 58(3), 545-554. DOI: https://doi.org/10.1093/biomet/58.3.545

R Core Team. (2020). R: A language and environment for statistical computing. Vienna, AT: R Foundation for Statistical Computing.

Rao, C. R. (1952). Advanced statistical methods in biometric research. New York, NY: John Wiley & Sons.

Resende, M. D. V. (2015). Genética quantitativa e de populações. Visconde do Rio Branco, MG: Suprema.

Resende, M. D. V., & Duarte, J. B. (2007). Precisão e controle de qualidade em experimentos de avaliação de cultivares. Pesquisa Agropecuária Tropical, 37(3), 182-194.

Resende, M. D. V., Silva, F. F., & Azevedo, C. F. (2014). Estatística matemática, biométrica e computacional: Modelos mistos, multivariados, categóricos e generalizados (REML/BLUP), inferência bayesiana, regressão aleatória, seleção genômica, QTL-GWAS, estatística espacial e temporal, competição, sobrevivência. Viçosa, MG: UFV.

Ribeiro, L. P., Carvalho, L. P., Farias, F. J. C., Rodrigues, J. I. S., Teodoro, P. E., & Bhering, L. L. (2018). Genetic gains in agronomic and technological traits of elite cotton genotypes. Bragantia, 77(3), 466-475. DOI: https://doi.org/10.1590/1678-4499.2017329

Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistic, 6(2), 461-464. DOI: https://doi.org/10.1214/aos/1176344136

Smith, A. B., Cullis, B. R., & Thompson, R. (2005). The analysis of crop cultivar breeding and evaluation trials: An overview of current mixed model approaches. The Journal of Agricultural Science, 143(6), 449-462. DOI: https://doi.org/10.1017/S0021859605005587

So, Y.-S., & Edwards, J. (2011). Predictive ability assessment of linear mixed models in multienvironment trials in corn. Crop Science, 51(2), 542-552. DOI: https://doi.org/10.2135/cropsci2010.06.0338

Teodoro, P. E., Carvalho, L. P., Rodrigues, J. I. S., Farias, F. J. C., Carneiro, P. C. S., & Bhering, L. L. (2018). Interrelations between agronomic and technological fiber traits in upland cotton. Acta Scientiarum. Agronomy, 40(1), e39364. DOI: https://doi.org/10.4025/actasciagron.v40i1.39364

Teodoro, P. E., Farias, F. J. C., Carvalho, L. P., Ribeiro, L. P., Nascimento, M., Azevedo, C. F., ... Bhering, L. L. (2019). Adaptability and stability of cotton genotypes regarding fiber yield and quality traits. Crop Science, 59(2), 518-524. DOI: https://doi.org/10.2135/cropsci2018.04.0250

van Eeuwijk, F. A., Bustos-Korts, D. V., & Malosetti, M. (2016). What should students in plant breeding know about the statistical aspects of genotype × Environment interactions? Crop Science, 56(5), 2119-2140. DOI: https://doi.org/10.2135/cropsci2015.06.0375

Woyann, L. G., Meira, D., Matei, G., Zdziarski, A. D., Dallacorte, L. V., Madella, L. A., & Benin, G. (2020). Selection indexes based on linear-bilinear models applied to soybean breeding. Agronomy Journal, 112(1), 175-182. DOI: https://doi.org/10.1002/agj2.20044

Xu, N., Fok, M., Li, J., Yang, X., & Yan, W. (2017). Optimization of cotton variety registration criteria aided with a genotype-by-trait biplot analysis. Scientific Reports, 7(1), 1-9. DOI: https://doi.org/10.1038/s41598-017-17631-4

Yan, W. (2001). GGEbiplot - A windows application for graphical analysis of multienvironment trial data and other types of two-way data. Agronomy Journal, 93(5), 1111-1118. DOI: https://doi.org/10.2134/agronj2001.9351111x

Yan, W., & Frégeau-Reid, J. (2018). Genotype by Yield*Trait (GYT) biplot: a novel approach for genotype selection based on multiple traits. Scientific Reports, 8(1), 1-10. DOI: https://doi.org/10.1038/s41598-018-26688-8

Yan, W., & Hunt, L. A. (2002). Biplot analysis of diallel data. Crop Science, 42(1), 21-30. DOI: https://doi.org/10.2135/cropsci2002.0021

Yan, W., & Tinker, N. A. (2006). Biplot analysis of multi-environment trial data: principles and applications. Canadian Journal of Plant Science, 86(3), 623-645. DOI: https://doi.org/10.4141/P05-169

Yan, W., Frégeau-Reid, J., Mountain, N., & Kobler, J. (2019). Genotype and management evaluation based on Genotype by Yield*Trait (GYT) analysis. Crop Breeding, Genetics and Genomics, 1, e190002. DOI: https://doi.org/10.20900/cbgg20190002

Publicado
2022-03-09
Como Citar
Peixoto, M. A., Evangelista, J. S. P. C., Coelho, I. F., Carvalho, L. P., Farias, F. J. C., Teodoro, P. E., & Bhering, L. L. (2022). Genotype selection based on multiple traits in cotton crops: The application of genotype by yield*trait biplot . Acta Scientiarum. Agronomy, 44(1), e54136. https://doi.org/10.4025/actasciagron.v44i1.54136
Seção
Melhoramento Vegetal

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus