Genotype selection based on multiple traits in cotton crops: The application of genotype by yield*trait biplot
Resumo
In cotton crops, the cotton seed yield significantly contributes with the success of any cultivar. However, other traits are considered when an ideotype is pointed out in the selection, such as the fiber quality traits. The aim of this study was to applied genotype by yield*trait (GYT) biplot to a multi-environment trial data of cotton genotypes and selected the best genotypes. For this end, thirteen genotypes from nineteen trials were assessed. Seven traits were evaluated [cotton seed yield (SY), fiber percentage (FP), fiber length (FL), fiber uniformity (FU), short fiber index (SFI), fiber strength (FS), and elongation (EL)] and residual error variances structures [identity variance (IDV) and diagonal (Diag)] were tested by bayesian information criterion. After, the REML/BLUP approach was applied to predict the genetic values of each trait and the selective accuracy were measured from the prediction. Then, the GYT-biplot were applied to the data. For SP and SFI traits, the model with Diag residual variance was indicated, whereas for SY FL, FU, FS, and EL traits the model with IDV residual variance demonstrated the best fit to the data. Values of accuracy were higher than 0.9 for all traits analyzed. In the GYT-biplot acute angles were find for all traits relations, which means high correlation between the yield*traits combination. Besides that, the correlation still can be seen in the GYT-biplot, as shown by the magnitudes of the angles between the pairs Yield*FU-Yield*FS and Yield*FS-Yield*EL. Also, the GYT-biplot indicates the genotype G4 with the best performance for Yield*FS, Yield*SFI, Yield*FU, Yield*FL, and Yield*FP combined. The genotypes G4, G1, G13, G8, and G9 represent those genotypes with yield advantage over the other cultivars. Then, the genotype G4 combines all desirable characteristics and demonstrate have large potential in the cotton breeding. The GYT approach were valuable and were highly recommended in cotton breeding programs for selection purpose in a multivariate scenario.
Downloads
Referências
Akinwale, R. O., Fakorede, M. A. B., Badu-Apraku, B., & Oluwaranti, A. (2014). Assessing the usefulness of GGE biplot as a statistical tool for plant breeders and agronomists. Cereal Research Communications, 42(3), 534-546. DOI: https://doi.org/10.1556/crc.42.2014.3.16
Cruz, C. D., Regazzi, A. J., & Carneiro, P. C. S. (2012). Modelos biométricos aplicados ao melhoramento genético. Viçosa, MG: UFV.
D’Eeckenbrugge, G. C., & Lacape, J.-M. (2014). Distribution and differentiation of wild, feral, and cultivated populations of perennial upland cotton (Gossypium hirsutum L.) in Mesoamerica and the Caribbean. PLoS One, 9(9), e107458. DOI: https://doi.org/10.1371/journal.pone.0107458
Gilmour, A. R., Gogel, B. J., Cullis, B. R., Welham, S. J., & Thompson, R. (2015). ASReml user guide release 4.1. Functional specification. Hemel Hempstead, GB: VSN International Ltd.
Henderson, C. R. (1975). Best linear unbiased estimation and prediction under a selection model. Biometrics, 31(2), 423-447. DOI: https://doi.org/10.2307/2529430
Kendal, E. (2019). Comparing durum wheat cultivars by genotype × yield × trait and genotype × trait biplot method. Chilean Journal of Agricultural Research, 79(4), 512-522. DOI: http://dx.doi.org/10.4067/S0718-58392019000400512
Li, Y., Suontama, M., Burdon, R. D., & Dungey, H. S. (2017). Genotype by environment interactions in forest tree breeding: review of methodology and perspectives on research and application. Tree Genetics & Genomes, 13(60), 1-18. DOI: https://doi.org/10.1007/s11295-017-1144-x
Malosetti, M., Ribaut, J.-M., & van Eeuwijk, F. A. (2013). The statistical analysis of multi-environment data: modeling genotype-by-environment interaction and its genetic basis. Frontiers in Physiology, 4, 44. DOI: https://doi.org/10.3389/fphys.2013.00044
Melo, V. L., Marçal, T. S., Rocha, J. R. A. S. C., Anjos, R. S. R., Carneiro, P. C. S., & Carneiro, J. E. S. (2020). Modeling (co)variance structures for genetic and non-genetic effects in the selection of common bean progenies. Euphytica, 216(5), 77. DOI: https://doi.org/10.1007/s10681-020-02607-9
Merrick, L. F., Glover, K. D., Yabwalo, D., & Byamukama, E. (2020). Use of Genotype by Yield*Trait (GYT) analysis to select hard red spring wheat with elevated performance for agronomic and disease resistance traits. Crop Breeding, Genetics and Genomics, 2(2), e200009. DOI: https://doi.org/10.20900/cbgg20200009
Oliveira, T. R. A., Gravina, G. A., Oliveira, G. H. F., Araújo, K. C., Araújo, L. C., Daher, R. F., ... Cruz, D. P. (2018). The GT biplot analysis of green bean traits. Ciência Rural, 48(6), e20170757. DOI: https://doi.org/10.1590/0103-8478cr20170757
Patterson, H. D., & Thompson, R. (1971). Recovery of inter-block information when block sizes are unequal. Biometrika, 58(3), 545-554. DOI: https://doi.org/10.1093/biomet/58.3.545
R Core Team. (2020). R: A language and environment for statistical computing. Vienna, AT: R Foundation for Statistical Computing.
Rao, C. R. (1952). Advanced statistical methods in biometric research. New York, NY: John Wiley & Sons.
Resende, M. D. V. (2015). Genética quantitativa e de populações. Visconde do Rio Branco, MG: Suprema.
Resende, M. D. V., & Duarte, J. B. (2007). Precisão e controle de qualidade em experimentos de avaliação de cultivares. Pesquisa Agropecuária Tropical, 37(3), 182-194.
Resende, M. D. V., Silva, F. F., & Azevedo, C. F. (2014). Estatística matemática, biométrica e computacional: Modelos mistos, multivariados, categóricos e generalizados (REML/BLUP), inferência bayesiana, regressão aleatória, seleção genômica, QTL-GWAS, estatística espacial e temporal, competição, sobrevivência. Viçosa, MG: UFV.
Ribeiro, L. P., Carvalho, L. P., Farias, F. J. C., Rodrigues, J. I. S., Teodoro, P. E., & Bhering, L. L. (2018). Genetic gains in agronomic and technological traits of elite cotton genotypes. Bragantia, 77(3), 466-475. DOI: https://doi.org/10.1590/1678-4499.2017329
Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistic, 6(2), 461-464. DOI: https://doi.org/10.1214/aos/1176344136
Smith, A. B., Cullis, B. R., & Thompson, R. (2005). The analysis of crop cultivar breeding and evaluation trials: An overview of current mixed model approaches. The Journal of Agricultural Science, 143(6), 449-462. DOI: https://doi.org/10.1017/S0021859605005587
So, Y.-S., & Edwards, J. (2011). Predictive ability assessment of linear mixed models in multienvironment trials in corn. Crop Science, 51(2), 542-552. DOI: https://doi.org/10.2135/cropsci2010.06.0338
Teodoro, P. E., Carvalho, L. P., Rodrigues, J. I. S., Farias, F. J. C., Carneiro, P. C. S., & Bhering, L. L. (2018). Interrelations between agronomic and technological fiber traits in upland cotton. Acta Scientiarum. Agronomy, 40(1), e39364. DOI: https://doi.org/10.4025/actasciagron.v40i1.39364
Teodoro, P. E., Farias, F. J. C., Carvalho, L. P., Ribeiro, L. P., Nascimento, M., Azevedo, C. F., ... Bhering, L. L. (2019). Adaptability and stability of cotton genotypes regarding fiber yield and quality traits. Crop Science, 59(2), 518-524. DOI: https://doi.org/10.2135/cropsci2018.04.0250
van Eeuwijk, F. A., Bustos-Korts, D. V., & Malosetti, M. (2016). What should students in plant breeding know about the statistical aspects of genotype × Environment interactions? Crop Science, 56(5), 2119-2140. DOI: https://doi.org/10.2135/cropsci2015.06.0375
Woyann, L. G., Meira, D., Matei, G., Zdziarski, A. D., Dallacorte, L. V., Madella, L. A., & Benin, G. (2020). Selection indexes based on linear-bilinear models applied to soybean breeding. Agronomy Journal, 112(1), 175-182. DOI: https://doi.org/10.1002/agj2.20044
Xu, N., Fok, M., Li, J., Yang, X., & Yan, W. (2017). Optimization of cotton variety registration criteria aided with a genotype-by-trait biplot analysis. Scientific Reports, 7(1), 1-9. DOI: https://doi.org/10.1038/s41598-017-17631-4
Yan, W. (2001). GGEbiplot - A windows application for graphical analysis of multienvironment trial data and other types of two-way data. Agronomy Journal, 93(5), 1111-1118. DOI: https://doi.org/10.2134/agronj2001.9351111x
Yan, W., & Frégeau-Reid, J. (2018). Genotype by Yield*Trait (GYT) biplot: a novel approach for genotype selection based on multiple traits. Scientific Reports, 8(1), 1-10. DOI: https://doi.org/10.1038/s41598-018-26688-8
Yan, W., & Hunt, L. A. (2002). Biplot analysis of diallel data. Crop Science, 42(1), 21-30. DOI: https://doi.org/10.2135/cropsci2002.0021
Yan, W., & Tinker, N. A. (2006). Biplot analysis of multi-environment trial data: principles and applications. Canadian Journal of Plant Science, 86(3), 623-645. DOI: https://doi.org/10.4141/P05-169
Yan, W., Frégeau-Reid, J., Mountain, N., & Kobler, J. (2019). Genotype and management evaluation based on Genotype by Yield*Trait (GYT) analysis. Crop Breeding, Genetics and Genomics, 1, e190002. DOI: https://doi.org/10.20900/cbgg20190002
DECLARAÇÃO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.