Microscopy of maize grains subjected to continuous and intermittent drying

Palavras-chave: scanning electron microscopy; starch granules; drying rate; cracks, Zea mays L.

Resumo

Drying is an important step in the post-harvest processes as a way of product conservation and quality preservation. In this context, this study aimed to evaluate the effect of continuous and intermittent drying of maize grains with different rest periods on the integrity of their micro- and macroscopic structures. Maize grains were harvested with a moisture content of 0.3399 ± 0.001 dry basis (db) and subjected to continuous and intermittent drying with 4, 8, 12, and 16 hours of rest period. An experimental fixed-bed dryer, with controlled drying air conditions at a temperature of 100 °C and air flow of 1.5 m3 min.−1 m−2 (12 m3 min.−1 m−3), was used. Continuous drying was completed with a moisture content of 0.1628 ± 0.0003 db, whereas intermittent drying was interrupted with 0.2195 ± 0.0002 db and resumed after rest. The drying rate, integrity through grain images, the conformation of particles through scanning electron microscopy, and cell membrane integrity were evaluated. The drying rate increased with an increase in the rest period, the increase in rest period reduced the intensity of cracks, and the reduction in rest period led to higher dispersion and reduction in the size of starch granules and lower integrity of cell membranes.

Downloads

Não há dados estatísticos.

Referências

Abasi, S., & Minaei, S. (2014). Effect of drying temperature on mechanical properties of dried corn. Drying Technology, 32(7), 774-780. DOI: https://doi.org/10.1080/07373937.2013.845203

ASABE Standards. (2009). S352.2: Moisture measurement-unground grain and seeds. St. Joseph, MI: American Association of Agricultural and Biological Engineers.

Balastreire, L. A., Herum, F. L., & Blaisdell, J. L. (1982). Fracture of corn endosperm in bending Part II: Fracture analysis by fractography and optical microscopy. Transactions of the ASAE, 25(4), 1062-1065. DOI: https://doi.org/10.13031/2013.33668

Barbosa de Lima, A. G., Delgado, J. M. P. Q., Neto, S. R. F., & Franco, C. M. R. (2016). Intermittent drying: Fundamentals, modeling and applications. In: J. M. P. Q. Delgado, & A. G. Barbosa de Lima (Eds.), Drying and energy technologies (p. 19-41). Cham, SW: Springer International Publishing Switzerland. DOI: https://doi.org/10.1007/978-3-319-19767-8_2

Barbosa, R. M., Silva, C. B., Medeiros, M. A., Cruz Centurion, M. A. P., & Vieira, R. D. (2012). Electrical conductivity and water content in peanut seeds. Ciência Rural, 42(1), 45-51. DOI: https://doi.org/10.1590/S0103-84782012000100008

Borém, F. M., Isquierdo, E. P., Oliveira, P. D., Ribeiro, F. C., Siqueira, V. C., & Taveira, J. H. S. (2014). Effect of intermittent drying and storage coffee quality. Bioscience Journal, 30(2), 609-616. DOI: https://doi.org/10.25186/cs.v13i2.1410

Borém, F. M., Oliveira, P. D., Isquierdo, E. P., da Silva Giomo, G., Saath, R., & Cardoso, R. A. (2013). Scanning electron microscopy of coffee beans subjected to different forms of processing and drying. Coffee Science, 8(2), 227-237. DOI: https://doi.org/10.25186/cs.v8i2.420

Chai, G., & Chen, Q. (2010). Characterization study of the thermal conductivity of carbon nanotube copper nanocomposites. Journal of Composite Materials, 44(24), 2863-2873. DOI: https://doi.org/10.1177/0021998310371530

Chakraborty, I., Pallen, S., Shetty, Y., Roy, N., & Mazumder, N. (2020). Advanced microscopy techniques for revealing molecular structure of starch granules. Biophysical Reviews, 12(1), 105-122. DOI: https://doi.org/10.1007/s12551-020-00614-7

Coradi, P. C., Milane, L. V., Camilo, L. J., Andrade, M. G. O., & Lima, R. E. (2015). Quality of corn grain after drying and storage in natural environment and artificial cooling. Revista Brasileira de Milho e Sorgo, 14(3), 420-432. DOI: https://doi.org/10.18512/1980-6477/rbms.v14n3p420-432

Feltre, G., Silva, C. A., Lima, G. B., Menegalli, F. C., & Dacanal, G. C. (2018). Production of thermal-resistant corn starch-alginate beads by dripping agglomeration. International Journal of Food Engineering, 14(1), 1-15. DOI: https://doi.org/10.1515/ijfe-2017-0296

Franco, C. M., Lima, A. G., Farias, V. S., & Silva, W. P. (2019). Modeling and experimentation of continuous and intermittent drying of rough rice grains. Heat and Mass Transfer, 56(3), 1003-1014. DOI: https://doi.org/10.1007/s00231-019-02773-0

Holopainen-Mantila, U., & Raulio, M. (2016). Cereal grain structure by microscopic analysis. In N. Sozer (Ed.), Imaging technologies and data processing for food engineers (p. 1-39). Cham, SW: Springer International Publishing Switzerland. DOI: https://doi.org/10.1007/978-3-319-24735-9_1

Kumar, C., Karim, M. A., & Joardder, M. U. H. (2014). Intermittent drying of food products: A critical review. Journal of Food Engineering, 121, 48-57. DOI: https://doi.org/10.1016/j.jfoodeng.2013.08.014

Leila, A., Jean-Yves, M., Sid-Ahmed, R., Thierry, M., Luc, G., Stephane, C., & Zoulikha, M. R. (2019). Prediction of thermal conductivity and specific heat of native maize starch and comparison with HMT treated starch. Journal of Renewable Materials, 7(6), 535-546. DOI: https://doi.org/10.32604/jrm.2019.04361

Marcos-Filho, J. (2015). Fisiologia de sementes de plantas cultivadas (2nd ed.). Londrina, PR: ABRATES.

Nascimento, V. R. G., Queiroz, M. R. de., Marchi, V. C., & Aguiar, R. H. (2012). Desempenho de estratégias de aeração de milho armazenado: Fungos e condutividade elétrica. Revista Brasileira de Engenharia Agrícola e Ambiental, 16(1), 113-121. DOI: https://doi.org/10.1590/S1415-43662012000100015

Sharma, V., & Bhardwaj, A. (2019). Scanning electron microscopy (SEM) in food quality evaluation. Evaluation Technologies for Food Quality, 743–761. DOI: https://doi.org/10.1016/B978-0-12-814217-2.00029-9

Shirmohammadi, M., Charrault, E., & Blencowe, A. (2018). Micromechanical properties of almond kernels with various moisture content levels. International Journal of Food Properties, 21(1), 1820-1832. DOI: https://doi.org/10.1080/10942912.2018.1508157

Silva, P. A., Kênia, A. D., Oliveira, J. A., & Pinho, É. V. R. V. (2007). Ultra-structural and physiological analysis during the development and drying of soybean seeds. Revista Brasileira de Sementes, 29(2), 15-22. DOI: https://doi.org/10.1590/S0101-31222007000200003

Suleiman, R. A., & Rosentrater, K. A. (2016). Measured and predicted temperature of maize grain (Zea mays L.) under hermetic storage conditions. Journal of Stored Products and Postharvest Research, 7(1), 1-10. DOI: https://doi.org/10.5897/JSPPR2015.0191

Ullmann, R., Resende, O., Chaves, T. H., Oliveira, D. E. C., & Costa, L. M. (2015). Physiological quality of sweet sorghum seeds dried under different conditions of air. Revista Brasileira de Engenharia Agrícola e Ambiental, 19(1), 64-69. DOI: https://doi.org/10.1590/1807-1929/agriambi.v19n1p64-69

Vergara, R. D. O., Capilheira, A. F., Gadotti, G. I., & Villela, F. A. (2018). Intermittence periods in corn seed drying process. Journal of Seed Science, 40(2), 193-198. DOI: https://doi.org/10.1590/2317-1545v40n2187373

Vieira, R. D., & Krzyzanowski, F. C. (1999). Teste de condutividade elétrica. In F. C. Krzyzanowski, R. D. Vieira, & J. B. França Neto (Ed.), Vigor de sementes: Conceitos e testes (p. 1-26). Londrina, PR: Abrates.

Wang, B., & Wang, J. (2019). Mechanical properties of maize kernel horny endosperm, floury endosperm and germ. International Journal of Food Properties, 22(1), 863-877. DOI: https://doi.org/10.1080/10942912.2019.1614050

Wei, S., Xiao, B., Xie, W., Wang, F., Chen, P., & Yang, D. (2020). Stress simulation and cracking prediction of corn kernels during hot-air drying. Food and Bioproducts Processing, 121, 202-212. DOI: https://doi.org/10.1016/j.fbp.2020.01.007

Zhao Y., Huang, K., Chen, X. F., Wang, F. H., Chen, P. X., Tu, G., & Yang, D. Y. (2018). Tempering-drying simulation and experimental analysis of corn kernel. International Journal of Food Engineering, 14(1), 1-10. DOI: https://doi.org/10.1515/ijfe-2017-0217

Publicado
2022-05-24
Como Citar
Mabasso, G. A., Siqueira, V. C., Quequeto, W. D., Resende, O., Schoeninger, V., Martins, E. A. S., & Isquierdo, E. P. (2022). Microscopy of maize grains subjected to continuous and intermittent drying . Acta Scientiarum. Agronomy, 44(1), e54906. https://doi.org/10.4025/actasciagron.v44i1.54906
Seção
Engenharia Agrícola

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus