Methods of inoculation of plant growth-promoting rhizobacteria in specialty maize genotypes under organic agriculture system
Resumo
Organic agriculture systems have the nutrients supplied by plant or animal by-products, bioinoculants, and compost-based products as earthworm composts and green manures. However, the quantitative and qualitative parameters of soil amendments depend on their sources, and soil amendments are generally not sufficient to supply the nutritional requirements of maize crops. Moreover, specialty maize requires high levels of N. Thus, the aim of this study was to investigate specialty maize varieties supplied with two microbial inoculants applied in two inoculation methods. These factorial treatments were compared with their checks (varieties without inoculation), and the interaction among these factors was also investigated. The trials were carried out during the growing season in 2017–2018 in the State University of Maringá. The popcorn trial followed the randomized complete block design where the factorial 3 × 2 × 2 + 3 had five replications. The trial with white grits maize followed the same experimental design but the factorial scheme was 2 × 2 × 2 + 2 with three replications. Both trials had maize varieties and two species of microbial inoculants (Azospirillum brasilense and Methylobacterium sp.) applied in two inoculation methods, in the seeds and the foliar spray at V4 stage of plant development. The response traits were grain yield and the components of crop production. In both trials, we verified that the majority of the interactions among the factors was non-significant (p > 0.05), indicating the independence of these factors. Furthermore, the microbial inoculants had no beneficial effects on the traits. The possibility of a higher crop yield did not confirm the application of the inoculant in the stage V4. The organic compost may be the key point in mitigating the treatments with microbial inoculants due to the availability of N in the first stages of plant development. The traits also suggest the necessity of more trials about the influence of microbial inoculants on specialty maize production.
Downloads
Referências
Andrade, A. F., Zoz, T., Zoz, A., Oliveira, C. E. S., & Witt, T. W. (2019). Azospirillum brasilense inoculation methods in corn and sorghum. Pesquisa Agropecuária Tropical, 49, 1-9. DOI: https://doi.org/10.1590/1983-40632019v4953027
Chanratana, M., Han, G. H., Choudhury, A. R., Sundaram, S., Halim, M. A., Krishnamoorthy, R., … Sa, T. (2017) Assessment of Methyloacterium oryzae CBM20 aggregates for salt tolerance and plant growth promoting characteristics for bio-inoculant development. AMB Express, 7(208), 1-10. DOI: https://doi.org/10.1186/s13568-017-0518-7
Chandra, D., Pallavi, Barh, A., & Sharma, I. P. (2018). Plant growth promoting bacteria: A gateway to sustainable agriculture. In Pankaj, & A. Sharma (Eds.), Microbial biotechnology in environmental monitoring and cleanup (p. 318-338). New Delhi, IN; IGI Global. DOI: https://doi.org/10.4018/978-1-5225-3126-5.ch020
Cruz, J. C., Konzen, E. A., Filho, I. A. P., Marriel, I. E., Cruz, I., Duarte, J. O., ... Alvarenga, R. C. (2006). Produção de milho orgânico na agricultura familiar. Sete Lagoas, MG: Embrapa Milho e Sorgo. (Circular Técnica, 81).
De-Bashan, L. E., Mayali, X., Bebout, B. M., Weber, P. K., Detweiler, A. M., Hernandez, J. P., ... Bashan, Y. (2016). Establishment of stable synthetic mutualism without co-evolution between microalgae and bacteria demonstrated by mutual transfer of metabolites (NanoSIMS isotopic imaging) and persistent physical association (Fluorescent in situ hybridization). Algal Research, 15, 179-186. DOI: https://doi.org/10.1016/j.algal.2016.02.019
Diaz, R. J., & Rosenberg, R. (2008). Spreading dead zones and consequences for marine ecosystems. Science, 321(5891), 926-929. DOI: https://doi.org/10.1126/science.1156401
Dourado, M. N., Neves, A. A. C., Santos, D. S., & Araújo, W. L. (2015) Biotechnological and agronomic potential of endophytic pink-pigmented methylotrophic Methylobacterium spp. BioMed Research International, 2015, 1-19. DOI: https://doi.org/10.1155/2015/909016
Ferreira, D. F. (2011). Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia, 35(6), 1039-1042. DOI: https://doi.org/10.1590/S1413-70542011000600001
Fritsche-Neto, R., Vieira, R. A., Scapim, C. A., Miranda, G. V., & Rezende, L. M. (2012). Updating the ranking of the coefficients of variation from maize experiments. Acta Scientarum. Agronomy, 34(1), 99-101. DOI: https://doi.org/10.4025/actasciagron.v34i1.13115
Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, ... Zaks, D. P. M. (2011). Solutions for a cultivated planet. Nature, 478, 337-342. DOI: https://doi.org/10.1038/nature10452
Fukami, J., Nogueira, M. A., Araujo, R. S., & Hungria, M. (2016). Acessing inoculation methods of maize and wheat with Azospirillum brasilense. AMB Express, 6(1), 1-13. DOI: https://doi.org/10.1186/s13568-015-0171-y
Galindo, F. S., Teixeira Filho, M. C. M., Buzetti, S., Pagliari, P. H., Santini, J. M. K., Alves, C. J., … Arf, O. (2019) Maize yield response to nitrogen rates and sources associated with Azospirillum brasilense. Agronomy Journal, 111(4), 1985-1997. DOI: https://doi.org/10.2134/agronj2018.07.0481
Grossi, C. E. M., Fantino, E., Serral, F., Zawoznik, M. S., Do Porto, D. A. F., & Ulloa, R. M. Methylobacterium sp. 2A is a plant growth-promoting rhizobacteria that has the potential to improve potato crop yield under adverse conditions. Frontiers in Plant Science, 11(71), 1-15. DOI: https://doi.org/10.3389/fpls.2020.0007
Hungria, M., Campo, R. J., Souza, E. M., & Pedrosa, F. O. (2010). Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil. Plant and Soil, 331, 413-425. DOI: https://doi.org/10.1007/s11104-009-0262-0
James, E. (2000). Nitrogen fixation in endophytic and associative symbiosis. Field Crops Research, 65(2), 197-209. DOI: https://doi.org/10.1016/S0378-4290(99)00087-8
Joe, M. M., Saravanan, V. S., Islam, M. R., & Sá, T. (2013). Development of alginate-based aggregate inoculants of Methylobacterium sp. and Azospirillum brasilense tested under in vitro conditions to promote plant growth. Journal of Applied Microbiology,116(2), 408-423. DOI: https://doi.org/10.1111/jam.12384
Krug, L., Morauf, C., Donat, C., Muller, H., Cernava, T., & Berg, G. (2020) Plant growth-promoting Methylobacteria selectively increase the biomass of biotechnologically relevant microalgae. Frontiers in Microbiology, 11(427), 1-12. DOI: https://doi.org/10.3389/fmicb.2020.00427
Larsen, J., Pineda-Sánchez, H., Delgado-Arellano, I., Castellano-Morales, V., Carreto-Montoya, L., & Villegas-Moreno, J. (2017). Interactions between microbial plant growth promoters and their effects on maize growth performance in different mineral and organic fertilization scenarios. Rhizosphere, 3(Part 1), 75-81. DOI: https://doi.org/10.1016/j.rhisph.2017.01.003
Lima, S. K., Galiza, M., Valadares, A., & Alves, F. (2020). Produção e consumo de produtos orgânicos no mundo e no Brasil. Texto para discussão / Instituto de Pesquisa Econômica Aplicada. Brasília, DF; Rio de Janeiro: RJ: Ipea.
Macdonald, G. K., Bennett, E. M., Potter, P. A., & Ramankutty, N. (2011). Agronomic phosphorus imbalances across the world’s croplands. Proceedings of the National Academy of Sciences of the United States of America, 108(7), 3086-3091. DOI: https://doi.org/10.1073/pnas.1010808108
Matsumura, E. E., Secco, V. A., Moreira, R. S., Santos, O. J. P., Hungria, M., & Oliveira, A. L. M. (2015). Composition and activity of endophytic bacterial communities in field-grown maize plants inoculated with Azospirillum brasilense. Annals of Microbiology, 65, 2187-2220. DOI: https://doi.org/10.1007/s13213-015-1059-4
Mumbach, G. L., Kotowski, I. E., Schneider, F. J. A., Mallmann, M. S., Bonfada, E. B., Portela, V. O., ... Kaiser, D. R. (2017). Resposta da inoculação com Azospirillum brasilense nas culturas de trigo e de milho safrinha. Scientia Agraria, 18(2), 97-103. DOI: http://dx.doi.org/10.5380/rsa.v18i2.51475
Oliveira, A. L. M., Santos, O. J. A. P., Marcelino, P. R. F., Milani, K. M. L., Zuluaga, M., Y., A., Zucareli, C., & Gonçalves, L. S. A. (2017). Maize inoculation with Azospirillum brasilense Ab-V5 cells enriched with exopolysaccharides and polyhydroxybutyrate results in high productivity under low N fertilizer input. Frontiers in Microbiology, 8(1873), 1-18. DOI: https://doi.org/10.3389/fmicb.2017.01873
Oliveira, C. E. D. S., Zoz, T., Vendruscolo, E. P., Andrade, A. F., Seron, C. C., & Witt, T. W. (2020). Does Azospirillum brasilense and biostimulant improve the initial growth of rice sow at greater depths? Journal of Crop Science and Biotechnology, 23, 461–468. DOI: https://doi.org/10.1007/s12892-020-00055-4
Omara, P., Aula, L., Dhillon, J. S., Oyebiyi, F., Eickhoff, E. M., Nambi, E., … Raun, W. (2020) Variability in winter wheat (Triticum aestivum L.) grain yield response to nitrogen fertilization in long-term experiments. Communications in Soil Science and Plant Analysis, 51(3), 403-412. DOI: https://doi.org/10.1080/00103624.2019.1709489
Pii, Y., Mimmo, T., Tomasi, N., Terzano, R., Cesco, S., & Crecchio, C. (2015). Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process: a review. Biology and Fertility of Soils, 51, 403-415. DOI: https://doi.org/10.1007/s13213-015-1059-4
Portugal, J. R., Arf, O., Peres, A. R., Gitti, D. C., Rodrigues, R. A. F., Garcia, N. F. S., & Garé, L. M. (2016). Azospirillum brasilense promotes increment in corn production. African Journal of Agricultural Research, 11(19), 1688-1698. DOI: https://doi.org/10.5897/AJAR2015.10723
Rodrigues Neto, J., Malavolta Jr., V. A., & Victor, O. (1986). Meio simples para isolamento e cultivo de Xanthomonas campestris pv. citri tipo B. Summa Phytopathologica, 12(1-2), 12-16.
Rozier, C., Hamzaoui, J., Lemoine, D., Czarnes, S., & Legendre, L. (2017). Field-based assessment of the mechanism of maize yield enhancement by Azospirillum lipoferum CRT1. Scientific Reports, 7(7416), 1-12. DOI: https://doi.org/10.1038/s41598-017-07929-8
Statistical Analysis Software [SAS]. (2013). SAS user’s guide: statistics, version 9.3 [Software]. Cary, NC: SAS Institute.
Santos, H. G., Jacomine, P. K., Anjos, L. H. C., Oliveira, V. A., Lumbreras, J. F., Coelho, M. R., ... Cunha, T. J. F. (2018). Sistema Brasileiro de Classificação de Solos. (5. ed. rev. e ampl.). Brasília, DF: Embrapa.
Shennan, C., Krupnik, T. J., Baird, G., Cohen, H., Forbush, K., Lovell, R. J., & Olimpi, E. M. (2017). Organic and conventional agriculture: A useful framing? Annual Review of Environment and Resources, 42, 317-346. DOI: https://doi.org/10.1146/annurev-environ-110615-085750
Setiyono, T. D., Walters, D. T., Cassman, K. G., Witt, C., & Dobermann, A. (2010). Estimating maize nutrient uptake requirements. Field Crops Research, 118(2), 158-168. DOI: https://doi.org/10.1016/j.fcr.2010.05.006
Spolaor, L. T., Gonçalves, L. S. A., Santos, O. J. A. P., Oliveira, A. L. M., Scapim, C. A., Bertagna, F. A. B., & Kuki, M. C. (2016). Plant growth-promoting bacteria associated with nitrogen fertilization at topdressing in popcorn agronomic performance. Bragantia, 75(1), 33-40. DOI: https://doi.org/10.1590/1678-4499.330
Vejan, P., Abdullah, R., Khadiran, T., Ismail, S., & Nasrulhaq Boyce, A. (2016). Role of plant growth promoting rhizobacteria in agricultural sustainability–A review. Molecules, 21(5), 573. DOI: https://doi.org/10.3390/molecules21050573
Vidotti, M. S., Matias, F. I., Alves, F. C., Pérez-Rodríguez, P., Beltran, G. A., Burgueño, J., & Fritsche-Neto, R. (2019). Maize responsiveness to Azospirillum brasilense: Insights into genetic control, heterosis and genomic prediction. PLos One, 14(6), 1-22. DOI: 10.1371/journal.pone.0217571
Zeffa, D. M., Perini, L. J., Silva, M. B., Sousa, N. V., Scapim, C. A., Oliveira, A. L. M., & Gonçalves, L. S. A. (2019). Azospirillum brasilense promotes increases in growth and nitrogen use efficiency of maize genotypes. PLoS One, 14(4), 1-19. DOI: https://doi.org/10.1371/journal.pone.0215332
Zeffa, D. M., Fantin, L. H., Santos, O. J. A. P., Oliveira, A. L. M., Canteri, M. G., Scapim, C. A., & Gonçalves, L. S. A. (2018). The influence of topdressing nitrogen on Azospirillum spp. inoculation in maize crops through meta-analysis. Bragantia, 77(3), 493-500. DOI: https://doi.org/10.1590/1678-4499.2017273
Yang, C., Hamel, C., Vujanovic, V., & Gan, Y. (2011). Fungicide: modes of action and possible impact on non-target microorganisms – Review article. ISRN Ecology, 2021, 1-9. DOI: https://doi.org/10.5402/2011/130289
DECLARAÇÃO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.