A GAMLSS approach to predicting growth of Nopalea cochenillifera Giant Sweet clone submitted to water and saline stress

  • Álefe Chagas de Lima Costa Universidade Federal Rural de Pernambuco
  • Antonio Dennys Melo de Oliveira Universidade Federal Rural de Pernambuco
  • João Pedro Soares Caraciolo Universidade Federal Rural de Pernambuco
  • Leandro Ricardo Rodrigues de Lucena Universidade Federal Rural de Pernambuco https://orcid.org/0000-0001-6985-7668
  • Maurício Luiz de Mello Vieira Leite Universidade Federal Rural de Pernambuco
Palavras-chave: forage cactus; BCPE model; plant height.

Resumo

Water and saline stresses are the main factors affecting agricultural production in semiarid regions. The tolerance of forage cactus to water and salt deficit makes it a promising solution, in particular Nopalea cochenillifera. The growth curves for species facing these conditions can provide useful information supporting the cultivation and management of natural populations and carry significant biological importance as growth rate assessment contributes to maintaining species viability. The objective of this study was to estimate the plant height and linear dimensions (length, width, and thickness) of N. cochenillifera Giant Sweet clone growing under water and saline stress. The experiment design was completely randomized, comprising a 4 × 4 factorial, with four water and four salinity levels; there were four replications. In order to estimate plant height in N. cochenillifera Giant Sweet clone as a function of the accumulated thermal sum, generalized additive models for location, scale, and shape (GAMLSS) were used to determine water level, saline level, length, width, and thickness. We constructed models using four distributions: the Weibull, Gumbel, Logistic, and Box-Cox power exponential distributions. The models were evaluated using global deviation and the generalized Akaike criterion. The Box–Cox power exponential proved to be the most effective in estimating N. cochenillifera height. This model enabled information relevant to practical environmental management to be obtained, as it precisely defined the optimum salt application and the required amount of replacement water, together with the cladode width for each plant growth stage using the accumulated thermal sum.

Downloads

Não há dados estatísticos.

Referências

Amador, B. M., Avila, A. C., Diéguez, E. T., Garibay, A. N., & Jones, H. G. (2001). Effects of NaCl salinity on growth and production of young cladodes of Opuntia ficus-indica. Journal Agronomy & Crop Science, 187(4), 269-279. DOI: https://doi.org/10.1046/j.1439-037X.2001.00529.x

Araújo, J. R. G. N., Gomes, F. T., Silva, M. J., Jardim, A. M. F. R., Simões, V. J. L. P., Izidrio, J. L. P. S., … Silva, T. G. F. (2019). Estresse hídrico em plantas forrageiras: Uma revisão. Pubvet, 13(1), 1-10. DOI: https://doi.org/10.31533/pubvet.v13n01a241.1-10

Buuren, S. V., & Fredriks, M. (2001). Worm plot: a simple diagnostic device for modelling growth reference curves. Statistics in Medicine, 20(8), 1259-1277. DOI: https://doi.org/10.1002/sim.746

Cunha, D. N. F. V., Gomes, E. S., Martuscello, J. A., Amorim, P. L., Silva, R. C., & Ferreira, P. S. (2012). Morfometria e acúmulo de biomassa em palma forrageira sob doses de nitrogênio. Revista Brasileira de Saúde e Produção Animal, 13(4), 1156-1165. DOI: https://doi.org/10.1590/S1519-99402012000400005

Diniz, W. J. S., Silva, T. G. F., Ferreira, J. M. S., Santos, D. C., Moura, M. S. B., Araújo, G. G. L., & Zolnier, S. (2017). Forage cactus-sorghum intercropping at different irrigation water depths in the Brazilian Semiarid Region. Pesquisa Agropecuária Brasileira, 52(9), 724-733. DOI: https://doi.org/http://dx.doi.org/10.1590/s0100-204x2017000900004

El-Mageed, T. A. A., El-Samnoudi, I. M., Ibrahim, A. E. M., & Tawwab, A. R. A. (2018). Compost and mulching modulates morphological, physiological responses and water use efficiency in sorghum (bicolor L. Moench) under low moisture regime. Agricultural Water Management, 208, 431-439. DOI: https://doi.org/10.1016/j.agwat.2018.06.042

Freire, J. L., Santos, M. V. F., Dubeux Jr., J. C. B., Neto, E. B., Lira, M. A., Cunha, M. V., ... Mello, A. C. L. (2018). Growth of cactus pear cv. Miúda under different salinity levels and irrigation frequencies. Anais da Academia Brasileira de Ciências, 90(4), 3893-3900. DOI: https://doi.org/10.1590/0001-3765201820171033

Fumes, G., Demétrio, C. G. B., Villegas, C., Corrente, J. E., & Bazzo, J. F. (2017). Growth curves for diameter and height using mixed models: An application in eucalyptus seedling. Open Journal of Forestry, 7(4), 403-415. DOI: https://doi.org/10.4236/ojf.2017.74024

Guimarães, B. V. C., Donato, S. L. R., Azevedo, A. M., Aspiazú, I., & Silva Jr., A. A. (2018). Prediction of ‘Gigante’ cactus pear yield by morphological characters and artificial neural networks. Revista Brasileira de Engenharia Agrícola e Ambiental, 22(5), 315-319. DOI: https://doi.org/10.1590/1807-1929/agriambi.v22n5p315-319

Leite, M. L. M. V., Lucena, L. R. R., Cruz, M. G., Sá Jr., E. H., & Simões, V. J. L. P. (2019). Leaf area estimate of Pennisetum glaucum by linear dimensions. Acta Scientiarum. Animal Science, 41(1), 1-7. DOI: https://doi.org/10.4025/actascianimsci.v41i1.42808

Lucena, L. R. R., Pereira, J. S., & Leite, M. L. M. V. (2018a). Avaliação do modelo de regressão potência no crescimento de Nopalea cochenillifera em função do fracionamento do cladódio. Revista Brasileira de Biometria, 36(3), 578-587. DOI: https://doi.org/10.28951/rbb.v36i3.238

Lucena, L. R. R., Leite, M. L. M. V., Simões, V. J. L. P., Simões, V. J. L. P., & Almeida, M. C. R. (2018b). Área de cladódio da palma Opuntia stricta utilizando dimensões lineares. Agrarian Academy, 5(9), 46-55. DOI: https://doi.org/10.18677/Agrarian_Academy_2018a5

Mendonça, H. F. C., Calvete, E. O., Nienow, A. A., Costa, R. C., Zerbielli, L., & Bonafé, M. (2012). Phyllochron estimation in intercropped strawberry and monocrop systems in a protected environment. Revista Brasileira de Fruticultura, 34(1), 15-23. DOI: https://doi.org/10.1590/S0100-29452012000100005

Munns, R., & Tester, M. (2008). Mechanisms of Salinity Tolerance. Annual Review of Plant Biology, 59(1), 651-681. DOI: https://doi.org/10.1146/annurev.arplant.59.032607.092911

Oliveira, T. A., Xavier Jr., S. F. A., Faria, G. A., Lopes, B. G., Barbosa, E. M., & Peixoto, A. P. B. (2020). An Application of Generalized Additive Models of Location, Scale, and Shape (GAMLSS) to estimate the Eucalyptus Height. Ciência e Natura, 42(Especial 3), 1-10. DOI: https://doi.org/10.5902/2179460X41710

Queiroz, M. G., Silva, T. G. F., Zolnier, S., Silva, S. M. S., Lima, L. R., & Alves, J. O. (2015). Características morfofisiológicas e produtividade da palma forrageira em diferentes lâminas de irrigação. Revista Brasileira de Engenharia Agrícola e Ambiental, 19(10), 931-938. DOI: https://doi.org/10.1590/1807-1929/agriambi.v19n10p931-938

R Core Team. (2019). A language and environment for statistical computing. Vienna, AT: R Foudation for Statistical Compunting.

Reis, C. M. G., Gazarini, L. C., Fonseca, T. F., & Ribeiro, M. M. (2016). Above-ground biomass estimation of Opuntia ficus-indica (l.) mill. for forage crop in a Mediterranean environment by using non-destructive methods. Experimental Agriculture, 54(2), 227-242. DOI: https://doi.org/10.1017/S0014479716000211

Renato, N. S., Silva, J. B. L., Sediyama, G. C., & Pereia, E. G. (2013). Influência dos métodos para cálculo de graus-dia em condições de aumento de temperatura para as culturas de milho e feijão. Revista Brasileira de Meteorologia, 28(4), 382-388. DOI: https://doi.org/10.1590/S0102-77862013000400004

Rigby, R. A., & Stasinopoulos, D. M. (2005). Generalized additive models for location, scale and shape (with discussion). Applied Statistics, 54(3), 507-554. DOI: https://doi.org/10.1111/j.1467-9876.2005.00510.x

Scalon, S. P. Q., Mussury, R. M., Euzébio, V. L. M., Kodama, F. M., & Kissmann, C. (2011). Estresse hídrico no metabolismo e crescimento inicial de mudas de mutambo (Guazuma ulmifolia Lam.). Ciência Florestal, 21(4), 655-662. DOI: https://doi.org/10.5902/198050984510

Silva, J. R. I., Jardim, A. M. R. F., Neto, J. B., Leite, M. L. M. V., & Teixeira, V. I. (2018). Estresse salino como desafio para produção de plantas forrageiras. Pesquisa Aplicada & Agrotecnologia, 11(3), 127-139. DOI: https://doi.org/10.5935/PAeT.V11.N3.13

Voudouris, V., Gilchrist, R., Rigby, R., Sedgwick, J., & Stasinopoulos, D. (2012). Modelling skewness and kurtosis with the BCPE density in GAMLSS. Journal of Applied Statistics, 39(6), 1279-1293. DOI: https://doi.org/10.1080/02664763.2011.644530

Yahmed, J. B., Oliveira, T. M., Novillo, P., Quinones, A., Forner, M. A., Salvador, A., ... Morillon, R. (2016). A simple, fast and inexpensive method to assess salt stress tolerance of aerial plant part: Investigations in the mandarin group. Journal of Plant Physiology, 190, 36-43. DOI: https://doi.org/10.1016/j.jplph.2015.10.008

Publicado
2022-05-24
Como Citar
Costa, Álefe C. de L., Oliveira, A. D. M. de, Caraciolo, J. P. S., Lucena, L. R. R. de, & Leite, M. L. de M. V. (2022). A GAMLSS approach to predicting growth of Nopalea cochenillifera Giant Sweet clone submitted to water and saline stress. Acta Scientiarum. Agronomy, 44(1), e54939. https://doi.org/10.4025/actasciagron.v44i1.54939
Seção
Biometria, Modelagem e Estatística

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus