Oxidative damage associated with salt stress during germination and initial development of purple corn seedlings
Resumo
In various parts of the world, agricultural exploitation faces saline soil or water, such that cultivable species tend to be limited regarding the establishment of seedlings, with effects on productivity. The objective of this study was to evaluate the effects of salinity levels associated with different temperatures on the germination, initial development, and oxidative damage indicators of purple corn seedlings. The experiment was completely randomized in a 5 × 2 factorial design (moistening of the germination paper with 0, 25, 50, 75, and 100 mM NaCl solutions at temperatures of 25 and 30°C). The parameters evaluated were germination, growth, and oxidative damage indicators at the seedling phase. The germinative decline and initial development of purple corn seedlings, regardless of the temperature (25 and 30°C), reflected oxidative damage resulting from saline stress. Although deleterious effects of salinity were observed, a temperature of 30°C provided greater length and accumulation of dry mass of purple corn seedlings compared to the effects at 25°C. Total chlorophyll, chlorophyll a, chlorophyll b, total carotenoids, and lipid peroxidation, regardless of the temperature (25 and 30°C), were identified as sensitive biochemical indicators for the detection of physiological quality of purple corn seedlings subjected to NaCl.
Downloads
Referências
AbdElgawad, H., Zinta, G., Hegab, M. M., Pandey, R., Asard, H., & Abuelsoud, W. (2016). High salinity induces different oxidative stress and antioxidant responses in maize seedlings organs. Frontiers in Plant Science, 7(276), 1-11. DOI: https://doi.org/10.3389/fpls.2016.00276
Abido, W. A. E., & Zsombik, L. (2019). Effect of salinity on germination characters and seedlings parameters of Egyptian flax cultivars growing in Nyiregyhaza. Acta Ecologica Sinica, 39(1), 1-7. DOI: https://doi.org/10.1016/j.chnaes.2018.05.001
Aflaki, F., Sedghi, M., Pazuki, A., & Pessarakli, M. (2017). Investigation of seed germination indices for early selection of salinity tolerant genotypes: a case study in wheat. Emirates Journal of Food and Agriculture, 29(3), 222-226. DOI: https://doi.org/10.9755/ejfa.2016-12-1940
Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24(1), 1-15. DOI: https://doi.org/10.1104/pp.24.1.1
Ayala, A., Muñoz, M. F., & Argüelles, S. (2014). Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Medicine and Cellular Longevity, 2014, 1-31. DOI: https://doi.org/10.1155/2014/360438
Bose, S., Fakir, O. A., Islam, M., Alam, M. K., Hossain, A. K. M. Z., Hossain, A., & Rashid, M. H. (2018). Effects of salinity on seedling growth of four maize (Zea mays L.) cultivars under hydroponics. Journal of Agricultural Studies, 6(1), 54-67. DOI: https://doi.org/10.5296/jas.v6i1.12401
Brasil. Ministério da Agricultura, Pecuária e Abastecimento. Secretaria de Defesa Agropecuária. (2009). Regras para análise de sementes. Brasília, DF: MAPA.
Carvalho, J. N. D. S., Silva, J. A. B. D., Reisa, D. S., Guimarães, C. C., & Santos, Í. E.D. A. (2017). Simulation of the effect of environmental temperature variation in the germination of corn varieties. Journal of Environmental Analysis and Progress, 2(3), 266-273. DOI: https://doi.org/10.24221/jeap.2.3.2017.1459.266-273
Çiçek, N., Oukarroum, A., Strasser, R. J., & Schansker, G. (2017). Salt stress effects on the photosynthetic electron transport chain in two chickpea lines differing in their salt stress tolerance. Photosynthesis Research, 136(3), 291-301. DOI: https://doi.org/10.1007/s11120-017-0463-y
Chavarín-Martínez, C. D., Gutiérrez-Dorado, R., Perales-Sánchez, J. X. K., Cuevas-Rodríguez, E. O., Milán-Carrillo, J., & Reyes-Moreno, C. (2019). Germination in optimal conditions as effective strategy to improve nutritional and nutraceutical value of underutilized Mexican blue maize seeds. Plant Foods for Human Nutrition, 74(2), 192-199. DOI: https://doi.org/10.1007/s11130-019-00717-x
Deng, B., Yang, K., Zhang, Y., & Li, Z. (2015). The effects of temperature on the germination behavior of white, yellow, red and purple maize plant seeds. Acta Physiologiae Plantarum, 37(8), 1-11. DOI: https://doi.org/10.1007/s11738-015-1937-1
El-Esawi, M. A., & Alayafi, A. A. (2019). Overexpression of rice Rab7 gene improves drought and heat tolerance and increases grain yield in rice (Oryza sativa L.). Genes, 10(1), 1-16. DOI: https://doi.org/10.3390/genes10010056
Elkelish, A. A., Alnusaire, T. S., Soliman, M. H., Gowayed, S., Senousy, H. H., & Fahad, S. (2019). Calcium availability regulates antioxidant system, physio-biochemical activities and alleviates salinity stress mediated oxidative damage in soybean seedlings. Journal of Applied Botany and Food Quality, 92, 258-266. DOI: https://doi.org/10.5073/JABFQ.2019.092.036
Ferreira, D. F. (2011). Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia, 35(6), 1039-1042. DOI: https://doi.org/10.1590/S1413-70542011000600001
Harakotr, B., Suriharn, B., Tangwongchai, R., Scott, M. P., & Lertrat, K. (2014). Anthocyanins and antioxidant activity in coloured waxy corn at different maturation stages. Journal of Functional Foods, 9, 109-118. DOI: https://doi.org/10.1016/j.jff.2014.04.012
Heath, L. R., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125(1), 189-198. DOI: https://doi.org/10.1016/0003-9861(68)90654-1
Joshi, R., Rana, A., Kumar, V., Kumar, D., Padwad, Y. S., Yadav, S. K., & Gulati, A. (2017). Anthocyanins enriched purple tea exhibits antioxidant, immunostimulatory and anticancer activities. Journal of Food Science and Technology, 54(7), 1953-1963. DOI: https://doi.org/10.1007/s13197-017-2631-7
Koirala, K. B., Giri, Y. P., Rijal, T. R., Zaidi, P. H., Ajanahalli, R. S., & Shrestha, J. (2017). Evaluation of grain yield of heat stress resilient maize hybrids in Nepal. International Journal of Applied Sciences and Biotechnology, 5(4), 511-522. DOI: https://doi.org/10.3126/ijasbt.v5i4.18774
Lao, F., Sigurdson, G. T., & Giusti, M. M. (2017). Health benefits of purple corn (Zea mays L.) phenolic compounds. Comprehensive Reviews in Food Science and Food Safety, 16(2), 234-246. DOI: https://doi.org/10.1111/1541-4337.12249
Lichtenthaler, H. K., & Buschmann, C. (2001). Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy. Current Protocols in Food Analytical Chemistry, 1(1), F4.3.1-F4.3.8. DOI: https://doi.org/10.1002/0471142913.faf0403s01
Liu, Y., Li, D., Zhang, Y., Sun, R., & Xia, M. (2014). Anthocyanin increases adiponectin secretion and protects against diabetes-related endothelial dysfunction. The American Journal of Physiology-Endocrinology and Metabolism, 306(8), 975-988. DOI: https://doi.org/10.1152/ajpendo.00699.2013
Mansilla, P. S., Nazar, M. C., & Pérez, G. T. (2020). Flour functional properties of purple maize (Zea mays L.) from Argentina. Influence of environmental growing conditions. International Journal of Biological Macromolecules, 146, 311-319. DOI: https://doi.org/10.1016/j.ijbiomac.2019.12.246
Marcos-Filho, J. (2015). Fisiologia de sementes de plantas cultivadas. (2. ed.). Londrina, PR: ABRATES.
Paucar-Menacho, L. M., Martínez-Villaluenga, C., Dueñas, M., Frias, J., & Peñas, E. (2017). Optimization of germination time and temperature to maximize the content of bioactive compounds and the antioxidant activity of purple corn (Zea mays L.) by response surface methodology. LWT - Food Science and Technology, 76(Part B), 236-244. DOI: https://doi.org/10.1016/j.lwt.2016.07.064
Shahid, M. A., Sarkhosh, A., Khan, N., Balal, R. M., Ali, S., Rossi, L., & Garcia-Sanchez, F. (2020). Insights into the physiological and biochemical impacts of salt stress on plant growth and development. Agronomy, 10(7), 938. DOI: https://doi.org/10.3390/agronomy10070938
Silva, R. C. D., Grzybowski, C. R. D. S., & Panobianco, M. (2016). Vigor de sementes de milho: influência no desenvolvimento de plântulas em condições de estresse salino. Revista Ciência Agronômica, 47(3), 491-499. DOI: https://doi.org/10.5935/1806-6690.20160059
Taiz, L., Zeiger, E., Moller, I., & Murphy, A. (2017). Fisiologia e desenvolvimento vegetal (6. ed.). Porto Alegre, RS: Artmed.
Thiraphatthanavong, P., Wattanathorn, J., Muchimapura, S., Thukham-mee, W., Wannanon, P., Tong-un, T., & Lertrat, K. (2014). Preventive effect of Zea mays L. (purple waxy corn) on experimental diabetic cataract. BioMed Research International, 2014, 1-8. DOI: https://doi.org/10.1155/2014/507435
Torğut, G., & Akbulut, G. B. (2018). Effect of the novel biodegradable copolymer and soil salinity on the growth of corn plant. Advances in Polymer Technology, 37(8), 3588-3595. DOI: https://doi.org/10.1002/adv.22143
DECLARAÇÃO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.