Genotype × environment interaction for the agronomic performance of high β-carotene sweetpotato

Palavras-chave: adaptability; stability; environmental stratification; genetic variability; Ipomoea batatas.

Resumo

Sweetpotato (Ipomoea batatas L.) is an important tuber vegetable for human health worldwide owing to its nutritional value and productivity. Consumption of orange-fleshed sweetpotato is beneficial to combat vitamin A deficiency in the world, including Brazil, as these tubers are rich in β-carotene, a precursor of vitamin A. The genotype × environment interaction is one of the greatest challenges in plant breeding, specifically in the selection and approval of cultivars. In this context, adaptability and stability analyses are warranted to evaluate the performance of various genotypes in terms of general or specific adaptations to certain environments and to identify genotypes responsive to environmental variations. Thus, the objective of this study was to evaluate the genotype × environment interaction as well as to estimate the adaptability and stability of sweetpotato genotypes for identifying and selecting promising candidates for breeding. The experiments were performed in four environments: Vera Cruz in São Paulo, Selvíria in Mato Grosso do Sul, and one organic and another intercropped production system in Sete Barras in São Paulo. A randomized block design with two replicates was adopted. A total of 265 genotypes were tested, and the orange-fleshed sweetpotato cultivar ‘Beauregard’ was used as the control. The additive main effects and multiplicative interaction model was used to study environmental stratification, adaptability, and stability. The genotype × environment interaction was evident in all environments. The genotypes CERAT21-13 (marketable root yield, 22.30 t ha-1 in the four environments), CERAT29-26 (27.74 t ha-1), and CERAT52-22 (20.24 t ha-1) were the most adapted in general to the four environments. CERAT25-23, CERAT29-23, and CERAT29-26 were the most adapted to the environment in Vera Cruz; CERAT29-26, CERAT34-14, and CERAT56-32 to the environment in Selvíria; and CERAT31-10, CERAT35-19, and CERAT52-22 to the two environments in Sete Barras.

Downloads

Não há dados estatísticos.

Referências

Alves, R. M. V., Ito, D., Carvalho, J. L. V., Melo, W. F., & Godoy, R. L. O. (2012). Stability of biofortified sweet potato flour. Brazilian Journal of Food Technology, 15(1), 59-71. DOI: https://doi.org/10.1590/S1981-67232012000100007

Amaro, G. B., Talamini, V., Fernandes, F. R., Silva, G. O., & Madeira, N. R. (2019). Performance of sweet potato cultivars for yield and root quality in Sergipe, Brazil. Revista Brasileira de Ciências Agrárias, 14(1), 1-6. DOI: https://doi.org/10.5039/agraria.v14i1a5628

Andrade Junior, V. C., Viana, D. J. S., Pinto, N. A. V. D., Ribeiro, K. G., Pereira, R. C., Neiva, I. P., ... Andrade, P. C. R. (2012). Productive and qualitative characteristics of the vines and roots of sweet potato. Horticultura Brasileira, 30(4), 584-589. DOI: https://doi.org/10.1590/S0102-05362012000400004

Cruz, C. D. (2006). Programa Genes: biometria. Viçosa, MG: UFV.

Cruz, C. D., & Regazzi, A. J. (2001). Biometric models applied to genetic improvement (2nd ed.). Viçosa, MG: UFV.

Cruz, C. D., Carneiro, F. C. S., & Regazzi, A. J. (2012). Biometric models applied to genetic improvement (3rd ed.). Viçosa, MG: UFV.

Daros, M., & Amaral Júnior, A. T. (2000). Adaptabilidade e estabilidade de produção de Ipomoea batatas. Acta Scientiarum, 22(4), 911-917.

Duarte, J. B., & Vencovsky, R. (1999). Genotype x environment interaction: an introduction to "AMMI" analysis (9th ed.). Ribeirão Preto, SP: Sociedade Brasileira de Genética.

Fonseca, M. A. J. (2014). Genetic resources and breeding of vegetables for and with family farming. Horticultura Brasileira, 32(4), 1. DOI: https://dx.doi.org/10.1590/S0102-053620140000400023

Instituto Brasileiro de Geografia e Estatística [IBGE]. (2020). Table 1612: planted area, harvested area, amount produced, average yield and value of temporary crop production. Rio de Janeiro, RJ: IBGE. Retrieved on April 2, 2020 from https://sidra.ibge.gov.br/tabela/ 1612#resultado

Mandel, J. (1971). A new analysis of variance model non-additive data. Technometrics 13(1), 1-18. DOI: https://doi.org/10.1080/00401706.1971.10488751.

Melo, R. A. C., Silva, G. O., Vendrame, L. P. C., Pilon, L., Guimarães, J. A., & Amaro, G. B. (2020). Evaluation of purple-fleshed sweetpotato genotypes for root yield, quality and pest resistance. Horticultura Brasileira, 38(4), 439-444. DOI: https://doi.org/10.1590/s0102-0536202004016

Nass, L. L., Valois, A. C. C, Melo, I. S., & Valadares-Inglis, M. C. (2001). Genetic resources and breeding: plants. Rondonópolis, MT: Fundação Mato Grosso.

Nasser, M. D., Cardoso, A. I. I., Rós, A. B., Mariano-Nasser, F. A. C., Colombari, L. F., Ramos, J. A., & Furlaneto, K. A. (2020). Productivity and quality of sweet potato roots propagated by different sizes of mini cuttings. Scientia Plena, 16(7), 1-8. DOI: https://doi.org/10.14808/sci.plena.2020.070204

Oliveira, A. M. S, Blank, A. F., Alves, R. P., Arrigoni-Blank, M. F., Maluf, W. R., & Fernandes, R. P. M. (2017). Performance of sweet potato clones for bioethanol production in different cultivation periods. Horticultura Brasileira, 35(1), 57-62. DOI: https://doi.org/10.1590/s0102-053620170109

Otoboni, M. E. F., Oliveira, D. J. L. S. F., Vargas, P. F., Pavan, B. E., & Andrade, M. I. (2020). Genetic parameters and gain from selection in sweet potato genotypes with high betacarotene content. Crop Breeding and Applied Biotechnology, 20(3), 1-9. DOI: https://doi.org/10.1590/1984-70332020v20n3a42

Pereira, H. S., Melo, L. C., Faria, L. C., Peloso, M. J. D., & Wendland, A. (2010). Estratificação ambiental na avaliação de genótipos de feijoeiro-comum tipo carioca em Goiás e no Distrito Federal. Pesquisa Agropecuária Brasileira, 45(6), 554-562. DOI: https://doi.org/10.1590/S0100-204X2010000600004

Silva, G. O., Ponijaleki, R., & Suinaga, F. A. (2012). Genetic divergence among sweet potato accessions based on root traits. Horticultura Brasileira, 30(4), 595-599. DOI: https://doi.org/10.1590/S0102-05362012000400006

Silva, G. O., Suinaga, F. A., Ponijaleki, R., & Amaro, G. B. (2015). Performance of root yield traits in sweet potato cultivars. Revista Ceres, 62(4), 379-383. DOI: https://doi.org/10.1590/0034-737X201562040007

Silva, J., Ferreira, P. V., Oliveira, F. S., Teixeira, J. S., Silva, M. T. & Santos, D. G. (2018). Características de raízes tuberosas de clones de batata-doce por meio de técnicas multivariadas para seleção de genótipos superiores. Revista Verde de Agroecologia e Desenvolvimento Sustentável, 13(1), 33-38. DOI: http://dx.doi.org/10.18378/rvads.v13i1.5120

Yokomizo, G. K., Dias, J. S. A., Dias, C. T. S., & Hongyu, K. (2016). AMMI analysis on vegetative characters from banana genotypes in Amapá. Revista de Ciências Agrárias, 59(1), 1-8. DOI: https://doi.org/10.4322/rca.1845

Publicado
2022-06-29
Como Citar
Otoboni, M. E. F., Oliveira, D. J. L. S. F. de, Pavan, B. E., Andrade, M. I., & Vargas, P. F. (2022). Genotype × environment interaction for the agronomic performance of high β-carotene sweetpotato. Acta Scientiarum. Agronomy, 44(1), e55766. https://doi.org/10.4025/actasciagron.v44i1.55766
Seção
Melhoramento Vegetal

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus