Multi-trait selection of tomato introgression lines under drought-induced conditions at germination and seedling stages
Resumo
To be considered drought-tolerant, a tomato cultivar is required to present some level of tolerance at all developmental stages of plant growth. Since drought tolerance is a stage-specific phenomenon, genotype assessment must be performed separately at all developmental stages. In this study, we used a multi-trait index based on factor analysis and genotype-ideotype distance (FAI-BLUP index) to properly rank 49 tomato genotypes according to their tolerance to drought stress conditions at germination and seedling stages. Seeds of 47 introgression lines, which cultivar M82 is considered drought-sensitive, and the Solanum pennellii wild accession LA 716, which is considered drought-tolerant, were subjected to a control condition, where seeds were soaked in distilled water, and a drought condition, where seeds were soaked in a polyethylene glycol (PEG) solution (-0.3 MPa). Drought stress, induced by PEG, had a significant impact on all nine germination and growth performance-related traits; there was a reduction in shoot length (SL), total length (TL), initial germination percentage (IGP), final germination percentage (FGP), germination velocity index (GVI), and germination rate (GR). In contrast, the root-to-shoot ratio (R/S) and time to reach 50% germination (T50) increased under drought stress. Root length (RL) was less affected by drought, and in some genotypes, it was even increased. As expected, LA 716 ranked closest to the drought tolerance ideotype. IL 1-4-18, IL 2-3, IL 1-2, IL 9-2, and IL 10-1 were the most drought-tolerant at the germination stage. These results will serve as guidance for breeders who are aiming at developing drought-resistant tomato cultivars.
Downloads
Referências
Ali, Q., Haider, M. Z., Iftikhar, W., Jamil, S., Tariq Javed, M., Noman, A., … Perveen, R. (2018). Drought tolerance potential of Vigna mungo L. lines as deciphered by modulated growth, antioxidant defense, and nutrient acquisition patterns. Revista Brasileira de Botânica, 39(3), 801-812. DOI: https://doi.org/10.1007/s40415-016-0282-y
Avramova, V., Nagel, K. A., Abdelgawad, H., Bustos, D., Duplessis, M., Fiorani, F., & Beemster, G. T. S. (2016). Screening for drought tolerance of maize hybrids by multi-scale analysis of root and shoot traits at the seedling stage. Journal of Experimental Botany, 67(8), 2453-2466. DOI: https://doi.org/10.1093/jxb/erw055
Ayankojo, I. T., Morgan, K. T., Ozores-Hampton, M., & Migliaccio, K. W. (2018). Effects of real-time location-specific drip irrigation scheduling on water use, plant growth, nutrient accumulation, and yield of Florida fresh-market tomato. HortScience, 53(9), 1372–1378. DOI: https://doi.org/10.21273/HORTSCI13183-18
Baker, R. J. (1986). Selection indices in plant breeding. Selection Indices in Plant Breeding.
Bartlett, M. S. (1938). Methods of estimating mental factors. Nature, 141, 609-610.
Bolger, A., Scossa, F., Bolger, M. E., Lanz, C., Maumus, F., Tohge, T., … Fernie, A. R. (2014). The genome of the stress-tolerant wild tomato species Solanum pennellii. Nature Genetics, 46(9), 1034–1038. DOI: https://doi.org/10.1038/ng.3046
Borba, M. E. A., Maciel, G. M., Marquez, G. R., Júnior, E. F. F., & Nogueira, G. G. S. (2017). Genetic diversity and selection in tomato genotypes under water stress induced by mannitol diversidade genética e seleção em genótipos de tomateiro sob estresse hídrico induzido por manitol. Bioscience Journal, 33(3), 592–600.
Cattivelli, L., Rizza, F., Badeck, F. W., Mazzucotelli, E., Mastrangelo, A. M., Francia, E., … Stanca, A. M. (2008). Drought tolerance improvement in crop plants: An integrated view from breeding to genomics. Field Crops Research, 105(1–2), 1–14. DOI: https://doi.org/10.1016/j.fcr.2007.07.004
Chloupek, O., Dostál, V., Středa, T., Psota, V., & Dvořáčková, O. (2010). Drought tolerance of barley varieties in relation to their root system size. Plant Breeding, 129(6), 630-636. DOI: https://doi.org/10.1111/j.1439-0523.2010.01801.x
Cruz, C. D. (2013). GENES - Software para análise de dados em estatística experimental e em genética quantitativa. Acta Scientiarum. Agronomy, 35(3), 271–276. DOI: https://doi.org/10.4025/actasciagron.v35i3.21251
Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., … Lautenbach, S. (2013). Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36(1), 27-46. DOI: https://doi.org/10.1111/j.1600-0587.2012.07348.x
Eshed, Y., & Zamir, D. (1995). An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics, 141(3), 1147-1162.
Farooq, M., Basra, S.M.A., Ahmad, N., & Hafeez, K. (2005). Thermal Hardening: A New Seed Vigor Enhancement Tool in Rice. Journal of Integrative Plant Biology, 47(2), 187-193. DOI: http://dx.doi.org/10.1111/j.1744-7909.2005.00031.x.
Feng, J., Wang, D., Shao, C., Zhang, L., & Tang, X. (2018). Effects of cold plasma treatment on alfalfa seed growth under simulated drought stress. Plasma Science and Technology, 20(3). DOI: https://doi.org/10.1088/2058-6272/aa9b27
Florido Bacallao, M., & Bao Fundora, L. (2014). Revisión bibliográfica.Tolerancia a estrés por déficit hídrico en tomate (Solanum lycopersicum L.). Cultivos Tropicales, 35(3), 70-88.
Foolad, M. R., & Foolad, M. R. (2004). Recent advances in genetics of salt tolerance in Tomato. Plant Cell, Tissue and Organ Culture, 76(2), 101-119. DOI: https://doi.org/10.1023/B:TICU.0000007308.47608.88
Foolad, M. R., Zhang, L. P., & Subbiah, P. (2003). Genetics of drought tolerance during seed germination in tomato: Inheritance and QTL mapping. Genome, 46(4), 536-545. DOI: https://doi.org/10.1139/g03-035
Foolad, M. R. (2007). Genome mapping and molecular breeding of tomato. International Journal of Plant Genomics, 2007, 1-53. DOI: https://doi.org/10.1155/2007/64358
George, S., Ahmad Jatoi, S., & Uddin Siddiqui, S. (2013). Genotypic differences against PEG simulated drought stress in tomato. Pakistan Journal of Botany, 45(5), 1551-1556.
Ghebremariam, K. M., Liang, Y., Li, C., Li, Y., & Qin, L. (2013). Screening of tomato inbred-lines for drought tolerance at germination and seedling stage. Journal of Agricultural Science, 5(11), 93-101. DOI: https://doi.org/10.5539/jas.v5n11p93
Goyal, M. R., & Sharma, P. (2018). Water requirement of drip-irrigated tomato inside a shade net house. In Engineering Interventions in Sustainable Trickle Irrigation (p. 35-42). DOI: https://doi.org/10.1201/9781315184241-2
International Seed Testing Association [ISTA]. (2015). The germination test. In International rules for seed testing (p. i-5-56). Zurich, SW: ISTA. DOI: http://dx.doi.org/10.15258/istarules.2015.05.
Jiang, Y., & Su, D. (2018). Models of turfgrass seed germination related to water content. PLoS ONE, 13(10), 1-13. DOI: https://doi.org/10.1371/journal.pone.0204983
Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23(3), 187-200. DOI: https://doi.org/10.1007/BF02289233
Khodarahmpour, Z. (2011). Effect of drought stress induced by polyethylene glycol (PEG) on germination indices in corn (Zea mays L.) hybrids. African Journal of Biotechnology, 10(79), 18222-18227. DOI: https://doi.org/10.5897/AJB11.2639
Labouriau, L. G., & Valadares, M. B. (1976). On the germination of seeds of Calotropis procera. Anais da Academia Brasileira de Ciências, 48, 174-186.
Li, X., Mu, C., & Lin, J. (2014). The germination and seedlings growth response of wheat and corn to drought and low temperature in spring of Northeast China. Journal of Animal &Plant Sciences, 21(1), 3212-3222.
Lima, E. R., Santiago, A. S., Araújo, A. P., & Teixeira, M. G. (2005). Effects of the size of sown seed on growth and yield of common bean cultivars of different seed sizes. Brazilian Journal of Plant Physiology, 17(3), 273-281. DOI: https://doi.org/10.1590/s1677-04202005000300001
Lippman, Z. B., Semel, Y., & Zamir, D. (2007). An integrated view of quantitative trait variation using tomato interspecific introgression lines. Current Opinion in Genetics and Development, 17(6), 545-552. DOI: https://doi.org/10.1016/j.gde.2007.07.007
Lynch, J. P. (2007). Rhizoeconomics: The roots of shoot growth limitations. HortScience, 42(5), 1107-1109. DOI: https://doi.org/10.21273/HORTSCI.42.5.1107
Merchuk-Ovnat, L., Barak, V., Fahima, T., Ordon, F., Lidzbarsky, G. A., Krugman, T., & Saranga, Y. (2016). Ancestral qtl alleles from wild emmer wheat improve drought resistance and productivity in modern wheat cultivars. Frontiers in Plant Science, 2018(7), 1-14. DOI: https://doi.org/10.3389/fpls.2016.00452
Mishra, U., Rai, A., Kumar, R., Singh, M., & Pandey, H. P. (2016). Gene expression analysis of Solanum lycopersicum and Solanum habrochaites under drought conditions. Genomics Data, 9, 40-41. DOI: https://doi.org/10.1016/j.gdata.2016.04.001
Mohammadi, R. (2016). Efficiency of yield-based drought tolerance indices to identify tolerant genotypes in durum wheat. Euphytica, 211, 71-89. DOI: https://doi.org/10.1007/s10681-016-1727-x
Nakagawa, J., Krzyzanowski, F. C., Vieira, R. D., França-Neto, J. B. (1999). Testes de vigor baseados no desempenho das plântulas. In F.C. Krzyananowski, R. D.Vieira, & J. B. França-Neto (Eds.), Vigor de sementes: conceitos e testes. (p. 9-13). Londrina, PR: ABRATES.
Naveed, M., Mitter, B., Reichenauer, T. G., Wieczorek, K., & Sessitsch, A. (2014). Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp. FD17. Environmental and Experimental Botany, 97, 30-39. DOI: https://doi.org/10.1016/j.envexpbot.2013.09.014
Oliveira, I. C. M., Marçal, T. D. S., Bernardino, K. D. C., Ribeiro, P. C. D. O., Parrella, R. A. D. C., Carneiro, P. C. S., … Carneiro, J. E. D. S. (2019). Combining ability of biomass sorghum lines for agroindustrial characters and multitrait selection of photosensitive hybrids for energy cogeneration. Crop Science, 59(4), 1554-1566. DOI: https://doi.org/10.2135/cropsci2018.11.0693
Partheeban, C., Chandrasekhar, C. N., Jeyakumar, P., Ravikesavan., R., & Gnanam, R. (2017). Effect of PEG induced drought stress on seed germination and seedling characters of maize (Zea mays L.) genotypes. International Journal of Current Microbiology and Applied Sciences, 6(5), 1095-1104. DOI: https://doi.org/10.20546/ijcmas.2017.605.119
Pereira, W. A., Pereira, S. M. A., & Dias, D. C. F. S. (2013). Infuência do tamanho de semente e da restrição hídrica na germinação de sementes de soja e no desenvolvimento inicial das plântulas. Journal of Seed Science, 35(3), 316-322. DOI: https://doi.org/10.1590/S2317-15372013000300007
Prunier, J. G., Colyn, M., Legendre, X., Nimon, K. F., & Flamand, M. C. (2015). Multicollinearity in spatial genetics: separating the wheat from the chaff using commonality analyses. Molecular Ecology, 24(2), 263-283. DOI: https://doi.org/10.1111/mec.13029
R Core Team. (2017). R: A language and environment for statistical computing. Viena, AT: R Foundation for Statistical Computing.
Rahman, S. M. L., Nawata, E., & Sakuratani, T. (1999). Effect of water stress on growth, yield and eco-physiological responses of four tomato (Lycopersicon esculentum Mill.) cultivars. Engei Gakkai Zasshi, 68(3), 499-504. DOI: https://doi.org/10.2503/jjshs.68.499
Riaz, M., Farooq, J., Sakhawat, G., Mahmood, A., Sadiq, M., & Yaseen, M. (2013). Genotypic variability for root/shoot parameters under water stress in some advanced lines of cotton (Gossypium hirsutum L.). Genetics and Molecular Research, 12(1), 552-561. DOI: https://doi.org/10.4238/2013.February.27.4
Rigano, M. M., Arena, C., Di Matteo, A., Sellitto, S., Frusciante, L., & Barone, A. (2016). Eco-physiological response to water stress of drought-tolerant and drought-sensitive tomato genotypes. Plant Biosystems, 150(4), 682-691. DOI: https://doi.org/10.1080/11263504.2014.989286
Rocha, J. R. A. S. C., Machado, J. C., & Carneiro, P. C. S. (2018). Multitrait index based on factor analysis and ideotype-design: proposal and application on elephant grass breeding for bioenergy. GCB Bioenergy, 10(1), 52-60. DOI: https://doi.org/10.1111/gcbb.12443
Rocha, J. R. A. S. C., Nunes, K. V., Carneiro, A. L. N., Marçal, T. S., Salvador, F. V., Carneiro, P. C. S., & Carneiro, J. E. S. (2019). Selection of superior inbred progenies toward the common bean ideotype. Agronomy Journal, 111(3), 1181-1189. DOI: https://doi.org/10.2134/agronj2018.12.0761
Schauer, N., Semel, Y., Roessner, U., Gur, A., Balbo, I., Carrari, F., … Fernie, A. R. (2006). Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nature Biotechnology, 24(4), 447-454. DOI: https://doi.org/10.1038/nbt1192
Shamim, F., Saqlan, S. M., Habib-UR-Rehman A., & Waheed A. (2014). Screening and selection of tomato genotypes/cultivars for drought tolerance using multivariate analysis. Pakistan Journal of Botany 46(4), 1165-1178.
Sharp, R. E. (2004). Root growth maintenance during water deficits: physiology to functional genomics. Journal of Experimental Botany, 55(407), 2343-2351. DOI: https://doi.org/10.1093/jxb/erh276
Silva, L. J., Medeiros, A. D., & Oliveira, A. M. S. (2019). SeedCalc, a new automated R software tool for germination and seedling length data processing. Journal of Seed Science, 41(2), 250-257. DOI: https://doi.org/10.1590/2317-1545v42n2217267
Silva, M. J., Carneiro, P. C. S., Carneiro, J. E. S., Damasceno, C. M. B., Parrella, N. N. L. D., Pastina, M. M., … Parrella, R. A. C. (2018). Evaluation of the potential of lines and hybrids of biomass sorghum. Industrial Crops and Products, 125, 379-385. DOI: https://doi.org/10.1016/j.indcrop.2018.08.022
Steinhauser, M. C., Steinhauser, D., Gibon, Y., Bolger, M., Arrivault, S., Usadel, B., … Stitt, M. (2011). Identification of enzyme activity quantitative trait loci in a Solanum lycopersicum x Solanum pennellii introgression line population. Plant Physiology, 157(3), 998-1014. DOI: https://doi.org/10.1104/pp.111.181594
Thabet, S. G., Moursi, Y. S., Karam, M. A., Graner, A., & Alqudah, A. M. (2018). Genetic basis of drought tolerance during seed germination in barley. PLoS One, 13(11), 1-21. DOI: https://doi.org/10.1371/journal.pone.0206682
Toscano, S., Romano, D., Tribulato, A., & Patanè, C. (2017). Effects of drought stress on seed germination of ornamental sunflowers. Acta Physiologiae Plantarum, 39(8), 184. DOI: https://doi.org/10.1007/s11738-017-2484-8
Van Oijen, M., & Höglind, M. (2016). Toward a Bayesian procedure for using process-based models in plant breeding, with application to ideotype design. Euphytica, 207(3), 627-643. DOI: https://doi.org/10.1007/s10681-015-1562-5
Woyann, L. G., Meira, D., Zdziarski, A. D., Matei, G., Milioli, A. S., Rosa, A. C., … Benin, G. (2019). Multiple-trait selection of soybean for biodiesel production in Brazil. Industrial Crops and Products, 140, 111721. DOI: https://doi.org/10.1016/j.indcrop.2019.111721
Zhou, R., Kong, L., Wu, Z., Rosenqvist, E., Wang, Y., Zhao, L., … Ottosen, C. O. (2019). Physiological response of tomatoes at drought, heat and their combination followed by recovery. Physiologia Plantarum, 165(2), 144-154. DOI: https://doi.org/10.1111/ppl.12764
DECLARAÇÃO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.








































