Genetic resources for enhancing drought tolerance from a mini-core collection of spring bread wheat (Triticum aestivum L.)

  • Reza Mohammadi Dryland Agricultural Research Institute, Sararood branch, Agricultural Research, Education and Extension Organization
  • Saber Golkari Dryland Agricultural Research Institute, Agricultural Research, Education and Extension Organization
Palavras-chave: wheat; landraces; phenotypic diversity; grain yield; agronomic traits; stability performance.

Resumo

An enhanced level of drought tolerance in wheat (Triticum spp.) may be reached through combining agronomic and physiological traits associated with grain yield under drought conditions. We aimed to explore valuable diversity for the drought tolerance, existed in the core collection of Iranian spring bread wheat landraces. A number of 206 spring bread wheat accessions along with the check cultivar were assessed for grain yield, drought-adaptive traits, and estimated drought tolerance criteria during 2016-17 and 2017-18 growing seasons. Analysis of data using the best linear unbiased predictions (BLUPs) approach revealed that the genotype x environment (GE) interactions accounted for the highest variation in grain yield (36.23%) followed by 1000-kernel weight (35.39%), heading date (21.4%), days to maturity (16.38%), and plant height (5.83%). Using the hierarchical cluster analysis and developed pattern heat map based on the values for the agronomic traits and drought resistance indices, the accessions clustered into nine groups of different sets of agronomic and drought tolerance characteristics. Several accessions with high yield potential, early heading, optimal plant stature and high drought tolerance groups were identified. Three drought selection criteria of stress tolerance index (STI), geometric mean productivity (GMP) and mean productivity (MP) were more effective in identifying accessions producing higher yield under both drought and irrigated conditions. The superior accessions identified in this study may be explored further for breeding new wheat cultivars with enhanced level of drought tolerance.

Downloads

Não há dados estatísticos.

Referências

Acevedo, E., & Silva, P. S. (2007). Trigo candeal: calidad, mercado y zonas de cultivo. Santiago, CL: Universidad de Chile.

Aisawi, K. A. B., Reynolds, M. P., Singh, R. P., & Foulkes, M. J. (2015). The physiological basis of the genetic progress in yield potential of CIMMYT spring wheat cultivars from 1966 to 2009. Crop Science, 55(4), 1749-1764. DOI: https://doi.org/10.2135/cropsci2014.09.0601

Alvarado, G., López, M., Vargas, M., Pacheco, Á., Rodríguez, F., Burgueño, J., & Crossa J. (2015). META-R (Multi Environment Trail Analysis with R for Windows) Version 6.04. CIMMYT Research Data & Software Repository Network. Retrieved on 10 July, 2020 from https://data.cimmyt.org/dataset.xhtml?persistentId=hdl:11529/10201

Alwala, S., Kwolek, T., Mcpherson, M., Pellow, J., & Meyer, D. (2010). A comprehensive comparison between Eberhart and Russell joint regression and GGE biplot analyses to identify stable and high yielding maize hybrids. Field Crops Research, 119(2-3), 225-230. DOI: https://doi.org/10.1016/j.fcr.2010.07.010

Basu, S., Ramegowda, V., Kumar, A., & Pereira, A. (2016). Plant adaptation to drought stress. F1000Research, 5, F1000 Faculty Rev-1554. DOI: https://doi.org/10.12688/f1000research.7678.1

Chairi, F., Vergara-Díaz, O., Vatter, T., Aparicio, N., Nieto-Taladriz, M. T., Kefauver, S. C., … Araus, J. (2018). Post-green revolution genetic advance in durum wheat: the case of Spain. Field Crops Research, 228(3), 158-169. DOI: https://doi.org/10.1016/j.fcr.2018.09.003

Chen, H., Moakhar, N. P., Iqbal, M., Pozniak, C., Hucl, P., & Spaner, D. (2016). Genetic variation for flowering time and height reducing genes and important traits in western Canadian spring wheat. Euphytica, 208(2), 377-390. DOI: https://doi.org/10.1007/s10681-015-1615-9

Crespo-Herrera, L. A., Crossa, J., Huerta-Espino, J., Vargas, M., Mondal, S., Velu, G., … Singh, P. (2018). Genetic gains for grain yield in CIMMYT's semi-arid wheat yield trials grown in suboptimal environments. Crop Science, 58(5), 1890-1898. DOI: https://doi.org/10.2135/cropsci2018.01.0017

Crossa, J., Jarquín, D., Franco, J., Pérez-Rodríguez, P., Burgueño, J., Saint-Pierre, C., … Singh, S. (2016). Genomic prediction of gene bank wheat landraces. G3 (Bethesda), 6(7), 1819-1834. DOI: https://doi.org/10.1534/g3.116.029637

Curtis, T., & Halford, N. G. (2014). Food security: the challenge of increasing wheat yield and the importance of not compromising food safety. Annals of Applied Biology, 164(3), 354-372. DOI: https://doi.org/10.1111/aab.12108

Dodig, D., Zorić, M., Kandić, V., Perovic, D., & Šurlan-Momirović, G. (2012). Comparison of responses to drought stress of 100 wheat accessions and landraces to identify opportunities for improving wheat drought resistance. Plant Breeding, 131(3), 369-379. DOI: https://doi.org/10.1111/j.1439-0523.2011.01941.x

Eberhart, S. A., & Russell, W. A. (1966). Stability parameters for comparing varieties. Crop Science, 6(1),

-40. DOI: https://doi.org/10.2135/cropsci1966.0011183X000600010011x

Fischer, R. A., & Maurer, R. (1978). Drought resistance in spring wheat cultivars. I. Grain yield response. Australian Journal of Agricultural Research, 29(5), 897-912. DOI: https://doi.org/10.1071/AR9780897

Flohr, B. M., Hunt, J. R., Kirkegaard, J. A., Evans, J. R., Swan, A., & Rheinheimer, B. (2018). Genetic gains in NSW wheat cultivars from 1901 to 2014 as revealed from synchronous flowering during the optimum period. European Journal of Agronomy, 98, 1-13. DOI: https://doi.org/10.1016/j.eja.2018.03.009

Food and Agriculture Organization [FAO]. (2018). FAOSTAT. Retrieved on 10 July, 2020 from https://www.fao.org/faostat/en/#data/QC

Fufa, H., Baenziger, P. S., Beecher, B. S., Graybosch, R. A., Eskridge, K. M., & Nelson, L. A. (2005). Genetic improvement trends in agronomic performances and end-use quality characteristics among hard red winter wheat cultivars in Nebraska. Euphytica, 144(1), 187-198. DOI: https://doi.org/10.1007/s10681-005-5811-x

Gauch Jr., H. G. (1992). Statistical analysis of regional yield trials: AMMI analysis of factorial designs. Madison, US: Elsevier.

Gizaw, S. A., Garland-Campbell, K., & Carter, A. H. (2016). Use of spectral reflectance for indirect selection of yield potential and stability in Pacific Northwest winter wheat. Field Crops Research, 196(C), 199-206. DOI: https://doi.org/10.1016/j.fcr.2016.06.022

González-Ribot, G., Opazo, M., Silva, P., & Acevedo, E. (2017). Traits explaining durum wheat (Triticum turgidum L. spp. Durum) yield in dry chilean mediterranean environments. Frontiers in Plant Science, 8, 1781. DOI: https://doi.org/10.3389/fpls.2017.01781

Gutierrez, M., Reynolds, M. P., Raun, W. R., Stone, M. L., & Klatt, A. R. (2012). Indirect selection for grain yield in spring bread wheat in diverse nurseries worldwide using parameters locally determined in north-west Mexico. The Journal of Agricultural Science, 150(1), 23-43. DOI: https://doi.org/10.1017/S0021859611000426

Hossain, A. B. S., Sears, R. G., Cox, T. S., & Paulsen, G. M. (1990). Desiccation tolerance and its relationship to assimilate partitioning in winter wheat. Crop Science, 30(3), 622-627. DOI: https://doi.org/10.2135/cropsci1990.0011183X003000030030x

Johnson, H. W., Robinson, H. F., & Comstock, R. E. (1955). Estimates of genetic and environmental variability in soybeans. Agronomy Journal, 47(7), 314-318. DOI: https://doi.org/10.2134/agronj1955.00021962004700070009x

Kamran, A., Randhawa, H. S., Pozniak, C., & Spaner, D. (2013). Phenotypic effects of the flowering gene complex in canadian spring wheat germplasm. Crop Science, 53(1), 84-94. DOI: https://doi.org/10.2135/cropsci2012.05.0313

Lopes, M. S., El-Basyoni, I., Baenziger, P. S., Singh, S., Royo, C., Ozbek, K., … Vikram, P. (2015). Exploiting genetic diversity from landraces in wheat breeding for adaptation to climate change. Journal of Experimental Botany, 66(12), 3477-3486. DOI: https://doi.org/10.1093/jxb/erv122

Luo, J., Pan, Y.-B., Que, Y., Zhang, H., Grisham, M. P., & Xu, L. (2015). Biplot evaluation of test environments and identification of mega-environment for sugarcane cultivars in China. Scientific Reports, 5, 15505. DOI: https://doi.org/10.1038/srep15505

McIntyre, C. L., Mathews, K. L., Rattey, A., Chapman, S. C., Drenth, J., Ghaderi, M., … Shorter, R. (2010). Molecular detection of genomic regions associated with grain yield and yield-related components in an elite bread wheat cross evaluated under irrigated and rainfed conditions. Theoretical and Applied Genetics, 120(3), 527-541. DOI: https://doi.org/10.1007/s00122-009-1173-4

Mohammadi, R. (2016). Efficiency of yield-based drought tolerance indices to identify tolerant genotypes in durum wheat. Euphytica, 211(1), 71-89. DOI: https://doi.org/10.1007/s10681-016-1727-x

Mohammadi, R. (2018). Breeding for increased drought tolerance in wheat: a review. Crop and Pasture Science, 69(3), 223-241. DOI: https://doi.org/10.1071/CP17387

Mohammadi, R., Etminan, A., & Shoshtari, L. (2019). Agro-physiological characterization of durum wheat genotypes under drought conditions. Experimental Agriculture, 55(3), 484-499. DOI: https://doi.org/10.1017/S0014479718000133

Mohammadi, R., Haghparast, R., Amri, A., & Ceccarelli, S. (2010). Yield stability of rainfed durum wheat and GGE biplot analysis of multi-environment trials. Crop and Pasture Science, 61(1), 92-101. DOI: https://doi.org/10.1071/CP09151

Mohammadi, R., Haghparast, R., Sadeghzadeh, B., Ahmadi, H., Solimani, K., & Amri, A. (2014). Adaptation Patterns and Yield stability of durum wheat landraces to highland cold rainfed areas of Iran. Crop Science, 54(3), 944-954. DOI: https://doi.org/10.2135/cropsci2013.05.0343

Mohammadi, R., Sadeghzadeh, D., Armion, M., & Amri, A. (2011). Evaluation of durum wheat experimental lines under different climate and water regime conditions of Iran. Crop and Pasture Science, 62(2),

-151. DOI: https://doi.org/10.1071/CP10284

Mondal, S., Singh, R. P., Mason, E. R., Huerta-Espino, J., Autrique, E., & Joshi, A. K. (2016). Grain yield, adaptation and progress in breeding for early-maturing and heat-tolerant wheat lines in South Asia. Field Crops Research, 192, 78-85. DOI: https://doi.org/10.1016/j.fcr.2016.04.017

Morgounov, A., Zykin, V., Belan, I., Roseeva, L., Zelenskiy, Y., Gomez-Becerra, H. F., … Bekes, F. (2010). Genetic gains for grain yield in high latitude spring wheat grown in Western Siberia in 1900-2008. Field Crops Research, 117(1), 101-112. DOI: https://doi.org/10.1016/j.fcr.2010.02.001

Motzo, R., & Giunta, F. (2007). The effect of breeding on the phenology of Italian durum wheats: from landraces to modern cultivars. European Journal of Agronomy, 26(4), 462-470. DOI: https://doi.org/10.1016/j.eja.2007.01.007

Nouri, A., Etminan, A., Silva, J. A. T., & Mohammadi, R. (2011). Assessment of ‎yield, yield-related traits and drought tolerance of durum wheat genotypes (Triticum turjidum var. durum ‎Desf.). Australian Journal of Crop Science, 5(1), 8-16.

Pacheco, A., Vargas, M., Alvarado, G., Rodríguez, F., Crossa, J., & Burgueño, J. (2015). GEA-R (genotype x environment analysis with R for Windows) version 4.1. CIMMYT Research Data & Software Repository Network. Retrieved on 10 July, 2020 from http://hdl.handle.net/11529/10203

R Core Team. (2016). R: A language and environment for statistical computing. Vienna, AT: R Foundation for Statistical Computing.

Rao, P. S., Reddy, P. S., Rathore, A., Reddy, B. V. S., & Panwar, S. (2011). Application GGE biplot and AMMI model to evaluate sweet sorghum (Sorghum bicolor) hybrids for genotype × environment interaction and seasonal adaptation. Indian Journal of Agricultural Sciences, 81(5), 438-444.

Ray, D. K., Mueller, N. D., West, P. C., & Foley, J. A. (2013). Yield trends are insufficient to double global crop production by 2050. PLoS ONE, 8(6), e66428. DOI: https://doi.org/10.1371/journal.pone.0066428

Reynolds, M., Dreccer, F., & Trethowan, R. (2007). Drought-adaptive traits derived from wheat wild relatives and landraces. Journal of Experimental Botany, 58(2), 177-186. DOI: https://doi.org/10.1093/jxb/erl250

Rosielle, A. A., & Hamblin, J. (1981). Theoretical aspects of selection for yield in stress and non-stress environment. Crop Science, 21(6), 943-946. DOI: https://doi.org/10.2135/cropsci1981.0011183X002100060033x

Royo, C., Álvaro, F., Martos, V., Ramdani, A., Isidro, J., Villegas, D., & Moral, L. F. G. (2007). Genetic changes in durum wheat yield components and associated traits in Italian and Spanish varieties during the 20th century. Euphytica, 155, 259-270. DOI: https://doi.org/10.1007/s10681-006-9327-9

Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27(3), 379-423. DOI: https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

Sharma, R., Upadhyaya, H. D., Manjunatha, S. V., Rao, V. P., & Thakur, R. P. (2012). Resistance to foliar diseases in a mini-core collection of sorghum germplasm. Plant Disease, 96(11), 1629-1633. DOI: https://doi.org/10.1094/PDIS-10-11-0875-RE

Shavrukov, Y., Kurishbayev, A., Jatayev, S., Shvidchenko, V., Zotova, L., Koekemoer, F., … Langridge, P. (2017). Early flowering as a drought escape mechanism in plants: how can it aid wheat production? Frontiers in Plant Science, 8, 1950. DOI: https://doi.org/10.3389/fpls.2017.01950

Tian, Z., Jing, Q., Dai, T., Jiang, D., & Cao, W. (2011). Effects of genetic improvements on grain yield and agronomic traits of winter wheat in the Yangtze River Basin of China. Field Crops Research, 124(3), 417-425. DOI: https://doi.org/10.1016/j.fcr.2011.07.012

Tilman, D., Balzer, C., Hill, J., & Befort, B. L. (2011). Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America, 108(50), 20260-20264. DOI: https://doi.org/10.1073/pnas.1116437108

Upadhyaya, H. D., Pundir, R. P. S., Dwivedi, S. L., Gowda, C. L. L., Reddy, V. G., & Singh, S. (2009). Developing a mini core collection of sorghum for diversified utilization of germplasm. Crop Science, 49(5), 1769-1780. DOI: https://doi.org/10.2135/cropsci2009.01.0014

VanRaden, P. M. (2008). Efficient methods to compute genomic predictions. Journal of Dairy Science, 91(11), 4414-4423. DOI: https://doi.org/10.3168/jds.2007-0980

Vita, P., Nicosia, O. D., Nigro, F., Platani, C., Riefolo, C., Fonzo, N., & Cattivellia, L. (2007). Breeding progress in morpho-physiological, agronomical and qualitative traits of durum wheat cultivars released in Italy during the 20th century. European Journal of Agronomy, 26(1), 39-53. DOI: https://doi.org/10.1016/j.eja.2006.08.009

Wang, Y.-H., Upadhyaya, H. D., Burrell, A. M., Sahraeian, S. M. E., Klein, R. R., & Klein, P. E. (2013). Genetic structure and linkage disequilibrium in a diverse, representative collection of the C4 model plant, sorghum bicolor. G3 (Bethesda), 3(5), 783-793. DOI: https://doi.org/10.1534/g3.112.004861

Ward Jr., J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58(301), 236-244.

Yan, W. K., & Kang, M. S. (2003). GGE biplot analysis: a graphical tool for breeders, geneticists, and agronomists. Boca Raton, FL: CRC Press.

Yan, W., & Kang, M. S. (2002). GGE biplot analysis: a graphical tool for breeders, geneticists, and agronomists. Boca Raton, FL: CRC Press

Yan, W., & Rajcan, I. (2002). Biplot analysis of test sites and trait relations of soybean in Ontario. Crop Science, 42(1), 11-20. DOI: https://doi.org/10.2135/cropsci2002.1100

Yan, W., Cornelius, P. L., Crossa, J., & Hunt, L. A. (2001). Two types of GGE biplots for analyzing multi-environment trial data. Crop Science, 41(3), 656-663. DOI: https://doi.org/10.2135/cropsci2001.413656x

Yan, W., Hunt, L. A., Sheng, Q., & Szlavnics, Z. (2000). Cultivar evaluation and mega-environment investigation based on the GGE biplot. Crop Science, 40(3), 597-605. DOI: https://doi.org/10.2135/cropsci2000.403597x

Yates, F., & Cochran, W. G. (1938). The analysis of groups of experiments. The Journal of Agricultural Science, 28(4), 556-580. DOI: https://doi.org/10.1017/S0021859600050978

Zheng, T. C., Zhang, X. K., Yin, G. H., Wang, L. N., Han, Y. L., Chen, L., … He, Z. H. (2011). Genetic gains in grain yield, net photosynthesis and stomatal conductance achieved in Henan Province of China between 1981 and 2008. Field Crops Research, 122(3), 225-233. DOI: https://doi.org/10.1016/j.fcr.2011.03.015

Zhou, Y., Zhu, H. Z., Cai, S. B., He, Z. H., Zhang, X. K., Xia, X. C., & Zhang, G. S. (2007). Genetic improvement of grain yield and associated traits in the southern China winter wheat region: 1949 to 2000. Euphytica, 157, 465-473. DOI: https://doi.org/10.1007/s10681-007-9376-8

Zobel, R. W., Wright, M. J., & Gauch Jr., H. G. (1988). Statistical analysis of a yield trial. Agronomy Journal, 80(3), 388-393. DOI: https://doi.org/10.2134/agronj1988.00021962008000030002x

Publicado
2021-12-21
Como Citar
Mohammadi, R., & Golkari, S. (2021). Genetic resources for enhancing drought tolerance from a mini-core collection of spring bread wheat (Triticum aestivum L.) . Acta Scientiarum. Agronomy, 44(1), e56129. https://doi.org/10.4025/actasciagron.v44i1.56129
Seção
Melhoramento Vegetal

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus