Seasonal variations in soil chemical and microbial indicators under conventional and organic vineyards

  • Higo Forlan Amaral Centro Universitário Filadélfia / Universidade Estadual de Maringá
  • Kátia Regina Freitas Schwan-Estrada Universidade Estadual de Maringa
  • José Ozinaldo Alves de Sena Universidade Estadual de Maringá
  • Arnaldo Colozzi-Filho Instituto de Desenvolvimento Rural do Paraná
  • Diva Souza Andrade Instituto de Desenvolvimento Rural do Paraná https://orcid.org/0000-0003-0761-004X
Palavras-chave: basal respiration; flux C microbial; metabolic quotient; microbial biomass; Vitis labrusca.

Resumo

Studies regarding soil quality and health often need to be up-to-date, as they feed new models for quantifying agricultural impacts on the environment. This study was established to understand how types of vineyard cultivation (organic and conventional) affect soil chemical and microbial attribute dynamics throughout different seasons. Vineyard management had a strong effect on chemical soil attributes. Organic carbon and phosphorus were 2.8 and 2.0 times greater, respectively, in organic vineyards than in conventional vineyards. Metabolic quotient (qCO2) values were lowest in summer and autumn, with an average of 2.31-2.49 µg C-CO2 h-1 g-1 soil, under organic management, indicating greater microbial growing efficacy. Regardless of season and sampling position, organic soil had a higher C microbial biomass than conventional vineyards, with values ranging from 179.79 to 284.71 µg g-1 soil, which were similar to those of the adjacent forest soil. Overall, there were increases in both the microbial and the chemical attributes of soil under organic vineyards compared relative to conventional management, which might have been due to the continuous input of organic matter, crop rotation, and alternative plant protection and fertilizer compounds used in organic farming.

Downloads

Não há dados estatísticos.

Referências

Alvares, C. A., Stape, J. L., Sentelhas, P. C., de Moraes Gonçalves, J. L., & Sparovek, G. (2014). Köppen's climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711-728. DOI: https://doi.org/10.1127/0941-2948/2013/0507

Amaral, H. F., Sena, J. O. A., Andrade, D. S., Jácome, A. G., & Caldas, R. G. (2012). Carbon and soil microbial respiration in soil from conventional, organic vineyards and comparison with an adjacent forest. Semina: Ciências Agrárias, 33(2), 437-448. DOI: https://doi.org/10.5433/1679-0359.2012v33n2p437

Amaral, H. F., Sena, J. O. A., Schwan-Estrada, K. R. F., Balota, E. L., & Andrade, D. S. (2011). Soil chemical and microbial properties in vineyards under organic and conventional management in southern Brazil. Revista Brasileira de Ciência do Solo, 35, 1517-1526. DOI: https://dx.doi.org/10.1590/S0100-06832011000500006

Anderson, T.-H., & Domsch, K. H. (2010). Soil microbial biomass: The eco-physiological approach. Soil Biology & Biochemistry, 42(12), 2039-2043. DOI: https://doi.org/10.1016/j.soilbio.2010.06.026

Barros, J. A., Medeiros, E. V., Costa, D. P., Duda, G. P., Sousa Lima, J. R., Santos, U. J., ... Hammecker, C. (2020). Human disturbance affects enzyme activity, microbial biomass and organic carbon in tropical dry sub-humid pasture and forest soils. Archives of Agronomy and Soil Science, 66(4), 458-472. DOI: http://dx.doi.org/10.1080/03650340.2019.1622095

Bender, S. F., Wagg, C., & van der Heijden, M. G. A. (2016). An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends in Ecology & Evolution, 31(6), 440-452. DOI: http://dx.doi.org/10.1016/j.tree.2016.02.016

Bevivino, A., Paganin, P., Bacci, G., Florio, A., Pellicer, M. S., Papaleo, M. C., ... Dalmastri, C. (2014). Soil bacterial community response to differences in agricultural management along with seasonal changes in a Mediterranean region. PLoS ONE, 9(8), 1-14. DOI: https://doi.org/10.1371/journal.pone.0105515

Borsato, E., Zucchinelli, M., D'Ammaro, D., Giubilato, E., Zabeo, A., Criscione, P., ... Marinello, F. (2020). Use of multiple indicators to compare sustainability performance of organic vs conventional vineyard management. Science of The Total Environment, 711. DOI: https://doi.org/10.1016/j.scitotenv.2019.135081

Bremner, J. M., & Mulvaney, C. S. (1982). Nitrogen-total. In A. L. Page, R. H. Miller, & D. Keeney (Eds.), Methods of soil analysis (p. 595-624). Madison, US: American Society of Agronomy.

Brookes, P. C., Kragt, J. F., Powlson, D. S., & Jenkinson, D. S. (1985). Chloroform fumigation and the release of soil nitrogen: The effects of fumigation time and temperature. Soil Biology & Biochemistry, 17(6), 831-835. DOI: http://dx.doi.org/10.1016/0038-0717(85)90143-9

Chavarria, D. N., Pérez-Brandan, C., Serri, D. L., Meriles, J. M., Restovich, S. B., Andriulo, A. E., ... Vargas-Gil, S. (2018). Response of soil microbial communities to agroecological versus conventional systems of extensive agriculture. Agriculture, Ecosystems & Environment, 264, 1-8. DOI: https://doi.org/10.1016/j.agee.2018.05.008

Doran, G., & Zander, A. (2012). An improved method for measuring soil microbial activity by gas phase flow injection analysis. Revista Brasileira de Ciência do Solo, 36(2), 349-357. DOI: http://dx.doi.org/10.1590/S0100-06832012000200004

Francioli, D., Schulz, E., Lentendu, G., Wubet, T., Buscot, F., & Reitz, T. (2016). Mineral vs. organic amendments: microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies. Frontiers in Microbiology, 7(1446), 1-16. DOI: https://doi.org/10.3389/fmicb.2016.01446

Hernandez, M. M., & Menéndez, C. M. (2019). Influence of seasonality and management practices on diversity and composition of fungal communities in vineyard soils. Applied Soil Ecology, 135, 113-119. DOI: https://doi.org/10.1016/j.apsoil.2018.11.008

Kempers, A. J., & Zweers, A. (1986). Ammonium determination in soil extracts by the salicylate method. Communications in Soil Science and Plant Analysis, 17(7) 715-723. DOI: https://doi.org/10.1080/00103628609367745

Lehmann, J., Bossio, D. A., Kögel-Knabner, I., & Rillig, M. C. (2020). The concept and future prospects of soil health. Nature Reviews Earth & Environment, 1(10), 544-553. DOI: https://doi.org/10.1038/s43017-020-0080-8

Lopes, A. C. A., Gomes de Sousa, D. M., Chaer, G. M., Bueno dos Reis Junior, F., Goedert, W. J., & Carvalho Mendes, I. (2013). Interpretation of microbial soil indicators as a function of crop yield and organic carbon. Soil Science Society of America Journal, 77(2), 461-472. DOI: https://doi.org/10.2136/sssaj2012.0191

López-Piñeiro, A., Muñoz, A., Zamora, E., & Ramírez, M. (2013). Influence of the management regime and phenological state of the vines on the physicochemical properties and the seasonal fluctuations of the microorganisms in a vineyard soil under semi-arid conditions. Soil & Tillage Research, 126(1), 119-126. DOI: https://doi.org/10.1016/j.still.2012.09.007

Lori, M., Symnaczik, S., Mäder, P., De Deyn, G., & Gattinger, A. (2017). Organic farming enhances soil microbial abundance and activity—A meta-analysis and meta-regression. PLoS ONE, 12(7), 1-25. DOI: https://doi.org/10.1371/journal.pone.0180442

Mackie, K. A., Schmidt, H. P., Müller, T., & Kandeler, E. (2014). Cover crops influence soil microorganisms and phytoextraction of copper from a moderately contaminated vineyard. Science of The Total Environment, 500-501, 34-43. DOI: https://doi.org/10.1016/j.scitotenv.2014.08.091

Malik, A. A., Puissant, J., Buckeridge, K. M., Goodall, T., Jehmlich, N., Chowdhury, S., . . . Griffiths, R. I. (2018). Land use driven change in soil pH affects microbial carbon cycling processes. Nature Communications, 9(1), 3591. DOI: https://doi.org/10.1038/s41467-018-05980-1

Masoni, A., Frizzi, F., Brühl, C., Zocchi, N., Palchetti, E., Chelazzi, G., & Santini, G. (2017). Management matters: A comparison of ant assemblages in organic and conventional vineyards. Agriculture, Ecosystems & Environment, 246, 175-183. DOI: https://doi.org/10.1016/j.agee.2017.05.036

McLean, E. O. (1982). Soil pH and lime requirement. In A. L. Page, R. H. Miller, & D. Keeney (Eds.), Methods of soil analysis (p. 199-234). Madison, US: American Society of Agronomy.

Menalled, U. D., Seipel, T., & Menalled, F. D. (2020). Farming system effects on biologically mediated plant–soil feedbacks. Renewable Agriculture and Food Systems, 36(1), 1-7. DOI: http://dx.doi.org/10.1017/S1742170519000528

Mendes, I. C., Souza, L. M., Sousa, D. M. G., Lopes, A. A. C., Reis-Junior, F. B., Lacerda, M. P. C., & Malaquias, J. V. (2019). Critical limits for microbial indicators in tropical Oxisols at post-harvest: The FERTBIO soil sample concept. Applied Soil Ecology, 139, 85-93. DOI: https://doi.org/10.1016/j.apsoil.2019.02.025

Merino, C., Godoy, R., & Matus, F. (2016). Soil enzymes and biological activity at different levels of organic matter stability. Journal of Soil Science and Plant Nutrition, 16(1), 14-30. DOI: https://doi.org/10.4067/S0718-95162016005000002

Muneret, L., Auriol, A., Thiéry, D., & Rusch, A. (2019). Organic farming at local and landscape scales fosters biological pest control in vineyards. Ecological Applications, 29(1), e01818. DOI: https://doi.org/10.1002/eap.1818

Nelson, D. W., & Sommers, L. E. (1982). Total carbon, organic carbon and organic matter. (2nd ed.). In A. L. Page, R. H. Miller, & D. Keeney (Eds.), Methods of soil analysis (p. 539-594). Madison, US: American Society of Agronomy.

Okur, N., Altindİşlİ, A., Çengel, M., Göçmez, S., & Kayikçioğlu, H. H. (2009). Microbial biomass and enzyme activity in vineyard soils under organic and conventional farming systems. Turkish Journal of Agriculture and Forestry, 33(4), 413-423. DOI: https://doi.org/10.3906/tar-0806-23

Partey, S. T., Preziosi, R. F., & Robson, G. D. (2014). Improving maize residue use in soil fertility restoration by mixing with residues of low C-to-N ratio: effects on C and N mineralization and soil microbial biomass. Soil Science & Plant Nutrition, 14(3), 518-531. DOI: http://dx.doi.org/10.4067/S0718-95162014005000041

Pavan, M. A., Bloch, M. F. M., Zempulski, H. C., Miyazawa, M., & Zocoler, D. C. (1992). Manual de análise química de solo e controle de qualidade. Londrina, PR: IAPAR. (Circular Técnica, 76).

Schloter, M., Nannipieri, P., Sørensen, S. J., & van Elsas, J. D. (2018). Microbial indicators for soil quality. Biology and Fertility of Soils, 54(1), 1-10. DOI: https://doi.org/10.1007/s00374-017-1248-3

Seufert, V., Mehrabi, Z., Gabriel, D., & Benton, T. G. (2019). Current and potential contributions of organic agriculture to diversification of the food production system. In G. Lemaire, P. C. D. F. Carvalho, S. Kronberg, & S. Recous (Eds.), Agroecosystem diversity - Reconciling contemporary agriculture and environmental quality (p. 435-452). London, UK: Academic Press.

Singh, J. S., & Gupta, V. K. (2018). Soil microbial biomass: A key soil driver in management of ecosystem functioning. Science of The Total Environment, 634, 497-500. DOI: https://doi.org/10.1016/j.scitotenv.2018.03.373

United States Department of Agriculture [USDA]. (2014). Keys to soil taxonomy (12th ed.). Washington, DC: USDA.

Sparling, G. P., & West, A. W. (1988). A direct extraction method to estimate soil microbial C: calibration in situ using microbial respiration and 14C labelled cells. Soil Biology & Biochemistry, 20(6), 337-343. DOI: https://doi.org/10.1016/0038-0717

Srivastava, S. C., & Singh, J. S. (1991). Microbial C, N and P in dry tropical forest soils: Effects of alternate land-uses and nutrient flux. Soil Biology and Biochemistry, 23(2), 117-124. DOI: https://doi.org/10.1016/0038-0717(91)90122-Z

Tardy, V., Spor, A., Mathieu, O., Lévèque, J., Terrat, S., Plassart, P., ... Maron, P. A. (2015). Shifts in microbial diversity through land use intensity as drivers of carbon mineralization in soil. Soil Biology & Biochemistry, 90, 204-213. DOI: https://doi.org/10.1016/j.soilbio.2015.08.010

Vance, E. D., Brookes, P. C., & Jenkinson, D. S. (1987). An extraction method for measuring soil microbial biomass. Soil Biology & Biochemistry, 19(6), 703-707. DOI: https://doi.org/10.1016/0038-0717(87)90052-6

von Arb, C., Bünemann, E. K., Schmalz, H., Portmann, M., Adamtey, N., Musyoka, M. W., ... Fliessbach, A. (2020). Soil quality and phosphorus status after nine years of organic and conventional farming at two input levels in the Central Highlands of Kenya. Geoderma, 362. DOI: https://doi.org/10.1016/j.geoderma.2019.114112

Vuyyuru, M., Sandhu, H. S., Erickson, J. E., & Ogram, A. V. (2020). Soil chemical and biological fertility, microbial community structure and dynamics in successive and fallow sugarcane planting systems. Agroecology and Sustainable Food Systems, 44(6), 768-794. DOI: http://dx.doi.org/10.1080/21683565.2019.1666075

Zhang, Y., Shen, H., He, X., Thomas, B. W., Lupwayi, N. Z., Hao, X., ... Shi, X. (2017). Fertilization shapes bacterial community structure by alteration of soil pH. Frontiers in Microbiology, 8(1325), 1-11. DOI: https://doi.org/10.3389/fmicb.2017.01325

Zheng, Q., Hu, Y., Zhang, S., Noll, L., Böckle, T., Richter, A., & Wanek, W. (2019). Growth explains microbial carbon use efficiency across soils differing in land use and geology. Soil Biology & Biochemistry, 128, 45-55. DOI: https://doi.org/10.1016/j.soilbio.2018.10.006

Zuber, S. M., & Villamil, M. B. (2016). Meta-analysis approach to assess effect of tillage on microbial biomass and enzyme activities. Soil Biology & Biochemistry, 97, 176-187. DOI: https://doi.org/10.1016/j.soilbio.2016.03.011

Publicado
2022-09-16
Como Citar
Amaral, H. F., Schwan-Estrada , K. R. F., Sena, J. O. A. de, Colozzi-Filho, A., & Andrade, D. S. (2022). Seasonal variations in soil chemical and microbial indicators under conventional and organic vineyards. Acta Scientiarum. Agronomy, 45(1), e56158. https://doi.org/10.4025/actasciagron.v45i1.56158
Seção
Microbiologia Agrícola

Funding data

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus