Moisture sorption isotherms and hysteresis of soybean grains

Palavras-chave: adsorption; desorption; equilibrium moisture content; Glycine max (L.) Merr.; mathematical modeling

Resumo

Knowledge of the relationship between the equilibrium moisture content of the product and the air that involves it is essential to guarantee product quality and preserve its characteristics during storage. This trend can be studied by sorption isotherms. Thus, this study aimed to obtain desorption and adsorption isotherms of soybean grains to determine the mathematical model that best fits the experimental data and analyze the hysteresis phenomenon. Soybean grains with a moisture content of 21.95% (db) were used to verify the desorption process. The grains were dried until 3.50% (db) for the adsorption process. The static-gravimetric method was employed to determine the equilibrium moisture content of the grain at different temperatures (10, 20, 30, 40, and 50°C) and relative humidity levels (0.10 to 0.92%). Eight mathematical models were fitted to the experimental data. The modified Halsey model satisfactorily represented the desorption and adsorption phenomena of soybean grains. The equilibrium moisture content of soybean grains increased along with an increment in water activity. The increase in temperature led to a reduction in the equilibrium moisture content of soybean grains at a constant water activity. The equilibrium moisture content values obtained by desorption are higher than those obtained by adsorption, indicating the hysteresis phenomenon at the studied temperature range. The isotherms obtained for the desorption and adsorption process were classified as type III because of the high oil content in soybean grains.

Downloads

Não há dados estatísticos.

Referências

Alpizar-Reyes, E., Carrillo-Navas, H., Romero-Romero, R., Varela-Guerrero, V., Alvarez-Ramírez, J., & Pérez-Alonso, C. (2017). Thermodynamic sorption properties and glass transition temperature of tamarindo seed mucilage (Tamarindus indica L.). Food and Bioproducts Processing, 101, 166-176. DOI: https://doi.org/10.1016/j.fbp.2016.11.006

Arslan-Tontul, S. (2020). Moisture sorption isotherm, isosteric heat and adsorption surface area of whole chia seeds. LWT - Food Science and Technology, 119, 108859. DOI: https://doi.org/10.1016/j.lwt.2019.108859

Ashour, T., Korjenic, A., & Korjenic, S. (2015). Equilibrium moisture content of earth bricks biocomposites stabilized with cement and gypsum. Cement and Concrete Composites, 59, 18-25. DOI: https://doi.org/10.1016/j.cemconcomp.2015.03.005

Aviara, N. A., Ojediran, J. O., Sa’id, U. M., & Raji, A. O. (2016). Effect of moisture sorption hysteresis on thermodynamic properties of two millet varieties. Agricultural Engineering International: CIGR Journal, 18(1), 363-383.

Baptestini, F. M., Corrêa, P. C., Vanegas, J. D., Leite, R., Botelho, F. M., & Campos, R. C. (2017a). Water sorption kinetics of damaged beans: GAB model. Revista Brasileira de Engenharia Agrícola e Ambiental, 21(8), 550-555. DOI: https://doi.org/10.1590/1807-1929/agriambi.v21n8p550-555

Baptestini, F. M., Corrêa, P. C., Oliveira, G. H. H. D., Cecon, P. R., & Soares, N. D. F. F. (2017b). Kinetic modeling of water sorption by roasted and ground coffee. Acta Scientiarum. Agronomy, 39(3), 273-281. DOI: https://doi.org/10.4025/actasciagron.v39i3.32576

Bingol, G., Prakash, B., & Pan, Z. (2012). Dynamic vapor sorption isotherm of medium grain rice varieties. LWT – Food Science and Technology, 48(2), 156-163. DOI: https://doi.org/10.1016/j.lwt.2012.02.026

Brasil. (2009). Ministério da Agricultura, Pecuária e Abastecimento. Secretaria de Defesa Agropecuária. Regras para análise de sementes. Brasília, DF: MAPA/ACS.

Brooker, D. B., Bakker-Arkema, F. W., & Hall, C. W. (1992). Drying and storage of grains and oilseeds. Westport, US: The AVI Publishing Company.

Bustos-Vanegas, J. D., Corrêa, P. C., Zeymer, J. S., Baptestini, F. M., & Campos, R. C. (2018). Moisture sorption isotherms of quinoa seeds: Thermodynamic analysis. Engenharia Agrícola, 38(6), 941-950. DOI: https://doi.org/10.1590/1809-4430-eng.agric.v38n6p941-950/2018

Corrêa, P. C., Botelho, F. M., Botelho, S. D. C., & Goneli, A. L. (2014). Isotermas de sorção de água de frutos de Coffea canephora. Revista Brasileira de Engenharia Agrícola e Ambiental, 18(10), 1047-1052. DOI: https://doi.org/10.1590/1807-1929/agriambi.v18n10p1047-1052

Corrêa, P. C., Zeymer, J. S., Oliveira, G. H. H., Araujo, M. E. V., & Silva, C. S. (2020). Comparison between desorption isotherm curves of ryegrass (Lolim multiflorum L.) and flax (Linum usitatissimum L.) seeds. Ciência e Agrotecnologia, 44, 1-10. DOI: https://doi.org/10.1590/1413-7054202044004420

Costa, L. M., Resende, O., & Oliveira, D. E. (2013). Isotermas de dessorção e calor isostérico dos frutos de crambe. Revista Brasileira de Engenharia Agrícola e Ambiental, 17(4), 412-418. DOI: https://doi.org/10.1590/S1415-43662013000400009

Draper, N. R., & Smith, H. (1998). Applied regression analysis. (3nd ed.). New York, NY: John Wiley & Sons.

Emiliano, P. C., Vivanco, M. J., & Menezes, F. S. (2014). Information criteria: how to they behave in different models? Computational Statistics & Data Analysis, 69, 141-153. DOI: https://doi.org/10.1016/j.csda.2013.07.032

Ferreira Junior, W. N., Resende, O., Oliveira, D. E., & Costa, L. M. (2018). Isotherms and isosteric heat desorption of Hymenamea stogonocarpa Mart. seeds. Journal of Agricultural Science, 10(10), 504-512. DOI: https://doi.org/10.5539/jas.v10n10p504

Fonseca, N. N., Resende, O., Junior, W. N. F., Moura Silva, L. C., Andrade, E. G., & Oliveira, L. P. (2020). Desorption isotherms of graniferous sorghum grains. Research, Society and Development, 9(7), 1-16. DOI: https://doi.org/10.33448/rsd-v9i7.3661

Gomes da Costa, J. M., Silva, E. K., Toledo Hijo, A. A. C., Azevedo, V. M., & Borges, S. V. (2015). Physical and termal stability of spray-dried swiss cheese bioaroma powder. Drying Technology, 33(3), 346-354. DOI: https://doi.org/10.1080/07373937.2014.952376

Goneli, A. L. D., Corrêa, P. C., Oliveira, G. H., Resende, O., & Mauad, M. (2016). Moisture sorption isotherms of castor beans. Part 1: Mathematical modeling and hysteresis. Revista Brasileira de Engenharia Agrícola e Ambiental, 20(8), 751-756. DOI: https://doi.org/10.1590/1807-1929/agriambi.v20n8p751-756

Iglesias, H. A., & Chirife, J. (1976). Prediction of the effect of temperature on water sorption isotherms of food materials. International Journal of Food Science & Technology, 11(2), 109-116. DOI: https://doi.org/10.1111/j.1365-2621.1976.tb00707.x

Iorfa, S. A., Charles, A. C., Oneh, A. J., & Iorwuese, G. D. (2018). Moisture desorption isotherms and thermodynamic properties of sorghum-based complementary food. European Journal of Biophysics, 6(2), 23-31. DOI: https://doi.org/10.11648/j.ejb.20180602.11

Jian, F., Divagar, D., Mhaiki, J., Jayas, D. S., Fields, P. G., & White, N. D. (2018). Static and dynamic methods to determine adsorption isotherms of hemp seed (Cannabis sativa L.) with different percentages of dockage. Food Science & Nutrition, 6(6), 1629-1640. DOI: https://doi.org/10.1002/fsn3.744

Kapsalis, J. G. (2017). Influences of hysteresis and temperature on moisture sorption isotherms. In Water activity: Theory and applications to food. New York, NY: Routledge.

Kashaninejad, M., Mortazavi, A., Safekordi, A., & Tabil, L. G. (2007). Thin-layer drying characteristics and modeling of pistachio nuts. Journal of Food Engineering, 78(1), 98-108. DOI: https://doi.org/10.1016/j.jfoodeng.2005.09.007

Kuhn, M., & Johnson, K. (2013). Applied predictive modeling. New York, NY: Springer.

Le Duc, A., & Dong, H. K. (2016). Equilibrium moisture content isotherm characteristics of rapeseed. Asia Pacific Journal of Sustainable Agriculture, Food and Energy, 4(1),10-14.

Maciel, G., de la Torre, D. A., Cardoso, L. M., Cendoya, M. G., Wagner, J. R., & Bartosik, R. E. (2020). Determination of safe storage moisture content of soybean expeller by means of sorption isotherms and product respiration. Journal of Stored Products Research, 86, 101567. DOI: https://doi.org/10.1016/j.jspr.2019.101567

Maciel, G., De La Torre, D., Bartosik, R., Izquierdo, N., & Cendoya, G. (2015). Effect of oil content of sunflower seeds on the equilibrium moisture relationship and the safe storage condition. Agricultural Engineering International: CIGR Journal, 17(2), 248-258.

Madamba, P. S., Driscoll, R. H., & Buckle, K. A. (1996). The thin-layer drying characteristics of garlic slices. Journal of Food Engineering, 29(1), 75-97. DOI: https://doi.org/10.1016/0260-8774(95)00062-3

Mahanti, N. K., & Das, S. K. (2015). Moisture sorption isotherm of preconditioned pressure parboiled brown rice. Journal of Food Processing & Technology, 6(12), 1-9. DOI: https://doi.org/10.4172/2157-7110.1000519

McLaughlin, C. P., & Magee, T. R. A. (1998). The determination of sorption isotherm and the isosteric heats of sorption for potatoes. Journal of Food Engineering, 35(3), 267-280. DOI: https://doi.org/10.1016/S0260-8774(98)00025-9

Oliveira, G. H. H., Corrêa, P. C., Oliveira, A. P. L. R. D., Baptestini, F. M., & Vargas‐Elías, G. A. (2017). Roasting, grinding, and storage impact on thermodynamic properties and adsorption isotherms of arabica coffee. Journal of Food Processing and Preservation, 41(2), e12779. DOI: https://doi.org/10.1111/jfpp.12779

Peleg, M. (2020). Models of sigmoid equilibrium moisture sorption isotherms with and without the monolayer hypothesis. Food Engineering Reviews, 12(1), 1-13. DOI: https://doi.org/10.1007/S12393-019-09207-x

Quequeto, W. D., Resende, O., Silva, P. C., Silva, F. A. Z., & Silva, L. D. M. (2019). Drying kinetics of noni seeds. Journal of Agricultural Science, 11(5), 250-258. DOI: https://doi.org/10.5539/jas.v11n5p250

Raji, A. O., & Ojediran, J. O. (2011). Moisture sorption isotherms of two varieties of millet. Food and Bioproducts Processing, 89(3), 178-184. DOI: https://doi.org/10.1016/j.fbp.2010.06.001

Rizvi, S. S. (2005). Thermodynamic properties of foods in dehydration. In M. A. Rao, & S. S. H. Rizvi (Eds.), Engineering properties of foods (p. 261-348). Boca Raton, US: Taylor & Francis Group.

Rosa, G. S., Moraes, M. A., & Pinto, L. A. (2010). Moisture sorption properties of chitosan. LWT - Food Science and Technology, 43(3), 415-420. DOI: https://doi.org/10.1016/j.lwt.2009.09.003

Sheskin, D. (2004). Handbook of parametric and nonparametric statistical procedures (3nd ed.). Boca Raton, FL: CRC Press.

Silva, H. W. D., Rodovalho, R. S., & Silva, I. L. (2018). Hysteresis and thermodynamic properties of water sorption in ‘Malagueta’pepper seeds. Revista Brasileira de Engenharia Agrícola e Ambiental, 22(9), 658-663. DOI: https://doi.org/10.1590/1807-1929/agriambi.v22n9p658-663

Sing, K. S. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry, 57(4), 603-619.

Souza, D. G., Resende, O., Moura, L. C. D., Ferreira Junior, W. N., & Andrade, J. W. D. S. (2019). Drying kinetics of the sliced pulp of biofortified sweet potato (Ipomoea batatas L.). Engenharia Agrícola, 39(2), 176-181. DOI: https://doi.org/10.1590/1809-4430-eng.agric.v39n2p176-181/2019

Teixeira, L. P., Andrade, E. T. D., & Devilla, I. A. (2018). Isosteric heat, entropy, and gibbs free energy of pumpkin seeds (Cucurbita moschata). Engenharia Agrícola, 38(1), 97-102. DOI: https://doi.org/10.1590/1809-4430-eng.agric.v38n1p97-102/2018

Torres, M. D., Chenlo, F., & Moreira, R. (2018). Structural features and water sorption isotherms of carrageenans: A prediction model for hybrid carrageenans. Carbohydrate Polymers, 180, 72-80. DOI: https://doi.org/10.1016/j.carbpol.2017.10.010

Vázquez, G., Chenlo, F., & Moreira, R. (2003). Sorption isotherms of lupine at different temperatures. Journal of Food Engineering, 60(4), 449-452. DOI: https://doi.org/10.1016/S0260-8774(03)00068-2

Vishwakarma, R. K., Shivhare, U. S., & Nanda, S. K. (2011). Moisture adsorption isotherms of guar (Cyamposis tetragonoloba) grain and guar gum splits. LWT - Food Science and Technology, 44(4), 969-975. DOI: https://doi.org/10.1016/j.lwt.2010.09.002

Yang, Z., Zhu, E., & Zhu, Z. (2015). Water desorption isotherm and drying characteristics of green soybean. Journal of Stored Products Research, 60, 25-30. DOI: https://doi.org/10.1016/j.jspr.2014.10.006

Zeymer, J. S., Corrêa, P. C., Oliveira, G. H., Baptestini, F. M., & Campos, R. C. (2019). Mathematical modeling and hysteresis of sorption isotherms for paddy rice grains. Engenharia Agrícola, 39(4), 524-532. DOI: https://doi.org/10.1590/1809-4430-eng.agric.v39n4p524-532/2019

Ziegler, V., Marini, L. J., Ferreira, C. D., Bertinetti, I. A., Silva, W. S. V., Goebel, J. T., ... Elias, M. C. (2016). Effects of temperature and moisture during semi-hermetic storage on the quality evaluation parameters of soybean grain and oil. Semina: Ciências Agrárias, 37(1), 131-144. DOI: https://doi.org/10.5433/1679-0359.2016v37n1p131

Publicado
2022-09-19
Como Citar
Zeymer, J. S., Corrêa, P. C., Oliveira, G. H. H. de, Araujo, M. E. V. de, Guzzo, F., & Baptestini, F. M. (2022). Moisture sorption isotherms and hysteresis of soybean grains. Acta Scientiarum. Agronomy, 45(1), e56615. https://doi.org/10.4025/actasciagron.v45i1.56615
Seção
Engenharia Agrícola

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus