Temperature: A major climatic determinant of cowpea production

Palavras-chave: water deficit; thermal stress; seed yield; gas exchange; Vigna unguiculata L.

Resumo

Cowpea planting season is crucial for high yield and should comprise the period of the year that warrants the best climatic conditions for cowpea cultivation. Thus, the objective of this study was to evaluate the influence of water availability and temperature on the performance of cowpea cultivars. A greenhouse experiment was conducted using a 4 × 2 × 5 factorial arrangement, with four replications. Factors included four levels of soil moisture (25, 50, 75, and 100% of water holding capacity), two growing seasons (mild and hot), and five cowpea cultivars (Carijó, Itaim, Pujante, Rouxinol, and Tapahium). The number of pods and seeds per plant, seed production, water use efficiency, shoot dry mass, root dry mass, and physiological parameters were evaluated. Seed production was higher during the mild season than during the hot season and increased linearly with increasing soil water availability. Photosynthetic activity and transpiration were higher during the hot season than during the mild season, with their reduction under a water availability of 25% regardless of the growing season. Total chlorophyll content decreased with excess water. Regardless of water availability, temperature was the most limiting climatic factor for cowpea performance. Cultivars Carijó, Itaim, and Tapahium exhibited a lower reduction in productive potential when grown in the hot season.

Downloads

Não há dados estatísticos.

Referências

Ahmed, F. E., & Suliman, A. S. H. (2010). Effect of water stress applied at different stages of growth on seed yield and water-use efficiency of Cowpea. Agriculture and Biology Journal of North America, 1(4), 534-540.

Angelotti, F., & Giongo, V. (2019). Ações de mitigação e adaptação frente às mudanças climáticas. In R. F. Melo, & T. V. Voltolini (Orgs.), Agricultura familiar dependente de chuva no Semiárido (p. 445-467). Petrolina, PE: Embrapa Semiárido.

Angelotti, F., Barbosa, L. G., Barros, J. R. A., & Santos, C. A. F. (2020) Cowpea (Vigna unguiculata) development under different temperatures and carbon dioxide concentrations. Revista Pesquisa Agropecuária Tropical, 50(1), 1-7. DOI: https://doi.org/10.1590/1983-40632020v5059377

Barros, J. R. A., Guimarães, M. J. M., Silva, R. M., Rêgo, M. T. C., Melo, N. F., Chaves, A. R. M., & Angelotti, F. (2021). Selection of cowpea cultivars for high temperature tolerance: physiological, biochemical and yield aspects. Physiology and Molecular Biology of Plants, 27(1), 1-10. DOI: https://doi.org/10.1007/s12298-020-00919-7

Batista, L. S., Coelho, E. F., Carvalho, F. A. P., Silva, M. G., Gomes Filho, R. R., & Gonçalves, A. A. (2016). Calibração de sonda artesanal de uso com TDR para avaliação de umidade de solos. Revista Brasileira de Agricultura Irrigada, 10(2), 522-532. DOI: https://doi.org/10.7127/rbai.v10n200388

Buckley, T. N. (2019). How do stomata respond to water status? New Phytologist, 224(1), 21-36. DOI: https://doi.org/10.1111/nph.15899

Cavalcanti, F. J. A. (2008). Recomendações de adubação para o estado de Pernambuco. Recife, PE: IPA.

Chen, Z., Ma, H., Xia, J., Hou, F., Shi, X., Hao, X., ... Luo, H. (2017). Optimal pre-plant irrigation and fertilization can improve biomass accumulation by maintaining the root and leaf productive capacity of cotton crop. Scientific Reports, 7(1), 1-13. DOI: https://doi.org/10.1038/s41598-017-17428-5

Coelho, J. B. M., Barros, M. F. C., Bezerra Neto, E., & Souza, E. R. (2014). Ponto de murcha permanente fisiológico e potencial osmótico de feijão caupi cultivado em solos salinizados. Revista Brasileira de Engenharia Agrícola e Ambiental, 18(7), 708-713. DOI: https://doi.org/10.1590/S1415-43662014000700006

Djanaguiraman, M., Perumal, P., Ciampitti, I. A., Gupta, S. K., & Prasad, P. V. V. (2018). Quantifying pearl millet response to high temperature stress: Thresholds, sensitive stages, genetic variability and relative sensitivity of pollen and pistil. Plant, Cell and Environment, 41(1), 993-1007. DOI: https://doi.org/10.1111/pce.12931

Farooq, M., Gogoi, N., Barthakur, S., Baroowa, B., Bharadwaj, N., Alghamdi, S. S., & Siddique, K. H. M. (2017). Drought stress in grain legumes during reproduction and grain filling. Journal of Agronomy and Crop Science, 203(2), 81-102. DOI: https://doi.org/10.1111/jac.12169

Ferreira, D. F. (2011). Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia, 35(6), 1039-1042. DOI: 10.1590/S1413-70542011000600001

Gray, S. B., & Brady, S. M. (2016). Plant developmental responses to climate change. Developmental Biology, 419(1), 64-77. DOI: https://doi.org/10.1016/j.ydbio.2016.07.023

Hayatu, M., Muhammad, S. Y., & Habibu, U. A. (2014). Effect of water stress on the leaf relative water content and yield of some cowpea (Vigna unguiculata (L) Walp.) genotype. International Journal of Scientific & Technology Research, 3(1), 148-152.

Intergovernmental Panel on Climate Change [IPCC]. (2014). Climate Change Synthesis Report Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, SW: IPCC.

Jumrani, K., & Bhatia, V. S. (2018). Impact of combined stress of high temperature and water deficit on growth and seed yield of soybean. Physiology and Molecular Biology Plants, 24(1), 37-50. DOI: https://doi.org/10.1007/s12298-017-0480-5

Karim, T. D. A., Sanoussi, A., Maârouhi, I. M., Falalou, H., & Yacoubou, B. (2018). Effect of water deficit at different stages of development on the yield components of cowpea (Vigna unguiculata L. Walp) genotypes. African Journal of Biotechnology, 19(9), 279-287. DOI: https://doi.org/10.5897/AJB2017.16347

Kaushal, N., Awasthi, R., Gupta, K., Gaur, P., Siddique, K. H. M., & Nayyar, H. (2013). Heat-stress-induced reproductive failures in chickpea (Cicer arietinum) are associated with impaired sucrose metabolism in leaves and anthers. Functional Plant Biology, 40(12), 1334-1349. DOI: https://doi.org/10.1071/FP13082

Koevoets, I. T., Venema, J. H., Elzenga, J. T. M., & Testerink, C. (2016). Roots withstanding their environment: Exploiting root system architecture responses to abiotic stress to improve crop tolerance. Frontiers in Plant Science, 7(1), 1-19. DOI: https://doi.org/10.3389/fpls.2016.01335

Kumar, J., Kant, R., Kumar, S., Basu, P. S., Sarker, A., & Singh, N. P. (2016). Heat tolerance in lentil under field conditions. Legume Genomics and Genetics, 7(1), 1-11. DOI: https://doi.org/10.5376/lgg.2016.07.0001

Lopes, I., Guimarães, M. J. M., Melo, J. M. M., & Ramos, C. M. C. (2017) Balanço hídrico em função de regimes pluviométricos na região de Petrolina-PE. Irriga, 22(3), 443-457. DOI: https://doi.org/10.15809/irriga.2017v22n3p443-457

Matoso, A. O., Soratto, R. P., Guarnieri, F., Costa, N. R., Abrahão, R. C., & Tirabassi, L. H. (2018). Sowing date effects on cowpea cultivars as a second crop in southeastern brazil. Agronomy Journal, 110(1), 1-14. DOI: https://doi.org/10.2134/agronj2018.01.0051

Mathobo, R., Marais, D., & Steyn, J. M. (2017). The effect of drought stress on yield, leaf gaseous exchange and chlorophyll fluorescence of dry beans (Phaseolus vulgaris L.). Agricultural Water Management, 180(1), 118-125. DOI: https://doi.org/10.1016/j.agwat.2016.11.005

Melo, L. D. F. A., Melo Junior, J. L. A., Ferreira, V. M., Araujo Neto, J. C., & Neves, M. I. R. S. (2018). Biometric characterization and seed germination of giant mimosa (Mimosa bimucronata (DC) O. Kuntze). Australian Journal of Crop Science, 12(1), 108-115. DOI: https://doi.org/10.21475/ajcs.18.12.01. pne773

Mwale, S. E., Mildred, O. S., Kassim, S., Achola, E., Okul, V., Gibson, P., … Rubaihayo, P. (2017). Response of cowpea genotypes to drought stress in Uganda. American Journal of Plant Sciences, 13(1), 13-21. DOI: https://doi.org/10.4236/ajps.2017.84050

Ndiso, J. B., Olubayo, F., Chemining’wa, G. N., & Saha, H. M. (2016). Effect of drought stress on canopy temperature, growth and yield performance of cowpea varieties. International Journal of Plant & Soil Science, 9(3), 1-12. DOI: https://doi.org/10.9734 / IJPSS / 2016/21844

Nemeskéri, E., & Helyes, L. (2019). Physiological responses of selected vegetable crop species to water stress. Agronomy, 9(8), 1-19. DOI: https://doi.org/10.3390/agronomy9080447

Norton, M. R., Malinowski, D. P., & Volaire, F. (2016). Plant drought survival under climate change and strategies to improve perennial grasses. A review. Agronomy for Sustainable Development, 36(29), 1-15. DOI: https://doi.org/10.1007/s13593-016-0362-1

Perdomo, J. A., Conesa, M. À., Medrano, H., Ribas-Carbó, M., & Galmés, J. (2015). Effects of long-term individual and combined water and temperature stress on the growth of rice, wheat and maize: relationship with morphological and physiological acclimation. Physiologia Plantarum, 155(2), 149-165. DOI: https://doi.org/10.1111 / ppl.12303

Rivas, R., Falcão, H. M., Ribeiro, R. V., Machado, E. C., Pimentel, C., & Santos, M. G. (2016). Drought tolerance in cowpea species is driven by less sensitivity of leaf gas exchange to water deficit and rapid recovery of photosynthesis after rehydration. South African Journal of Botany, 103(1), 101-107. DOI: https://doi.org/10.1016/j.sajb.2015.08.008

Rocha, M. M., Silva, K. J. D., Menezes Júnior, J. A. N., Hashimoto, J. M., Neves, A. C., Souza, F. M., ... Fernandes, L. (2016). Feijão-caupi: melhoramento genético para o avanço da cultura. Teresina, PI: Embrapa Meio-Norte.

Sehgal, A., Sita, K., Siddique, K. H. M., Kumar, R., Bhogireddy, S., Varshney, R. K., … Nayyar, H. (2018). Drought or/and heat-stress effects on seed filling in food crops: impacts on functional biochemistry, seed yields, and nutritional quality. Frontiers in Plant Science, 9(1705), 1-19. DOI: https://doi.org/10.3389/fpls.2018.01705

Silva, S., Silva, C. S., Souza, J. E., Souza, A. C. P., & Araújo, E. R. (2019). Uso econômico da água para o feijão caupi na região do sertão alagoano. Revista Brasileira de Agrotecnologia, 9(1), 7-13. DOI: https://doi.org/10.18378/rebagro. v9i1.6452

Singh, J., Pandey, P., James, D., Chandrasekhar, K., Achary, V. M. M., Kaul, T., ... Reddy, M. K. (2014). Enhancing C3 photosynthesis: an outlook on feasible interventions for crop improvement. Plant Biotechnology Journal, 12(9), 1217-1230. DOI: https://doi.org/10.1111/pbi.12246

Sita, K., Sehgal, A., Hanumantharao, B., Nair, R. M., Prasad, P. V. V., Kumar, S., ... Nayyar, H. (2017). Food legumes and rising temperatures: Effects, adaptive functional mechanisms specific to reproductive growth stage and strategies to improve heat tolerance. Frontiers in Plant Science, 8(1), 1-30. DOI: https://doi.org/10.3389/fpls.2017.01658

Souza, L. S. B., Moura, M. S. B., Sediyama, G. C., & Silva, T. G. F. (2011). Eficiência do uso da água das culturas do milho e do feijão-caupi sob sistemas de plantio exclusivo e consorciado no semiárido brasileiro. Bragantia, 70(3), 715-721. DOI: https://doi.org/10.1590/S0006-87052011000300030

Souza, P. J. O. P., Farias, V. D. S., Lima, M. J. A., Ramos, T. F., & Sousa, A. M. L. (2017). Cowpea leaf area, biomass production and productivity under different water regimes in Castanhal, Pará, Brazil. Revista Caatinga, 30(3), 748-759. DOI: https://doi.org/10.1590/1983-21252017v30n323rc

Taiz, L., Moller, E. Z. I. M., & Murphy, A. (2017). Fisiologia e desenvolvimento vegetal (6. ed.). Porto Alegre, RS: Artmed.

Toscano, S., Farieri, E., Ferrante, A., & Romano, D. (2016). Physiological and biochemical responses in two ornamental shrubs to drought stress. Frontiers in Plant Science, 7(1), 1-12. DOI: https://doi.org/10.3389/fpls.2016.00645

Vale, J. C., Bertini, C., & Borém, A. (2017). Feijão-caupi: do plantio à colheita. Viçosa, MG: Editora UFV.

Xu, Z., Jiang, Y., Jia, B., & Zhou, G. (2016). Elevated‐CO2 response of stomata and its dependence on environmental factors. Frontiers in Plant Science, 7(657), 1-15. DOI: https://doi.org/10.3389/fpls.2016.00657

Zandalinas, S. I., Mittler, R., Balfagón, D., Arbona, V., & Gómez-Cadenas, A. (2018). Plant adaptations to the combination of drought and high temperatures. Physiologia Plantarum, 162(1), 2-12. DOI: https://doi.org/10.1111/ppl.12540

Publicado
2022-09-19
Como Citar
Barros, J. R. A., Guimarães, M. J. M., Simões, W. L., Melo, N. F. de, & Angelotti, F. (2022). Temperature: A major climatic determinant of cowpea production. Acta Scientiarum. Agronomy, 45(1), e56812. https://doi.org/10.4025/actasciagron.v45i1.56812
Seção
Produção Vegetal

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus