Oxidative stress, protein metabolism, and physiological potential of soybean seeds under weathering deterioration in the pre-harvest phase

Palavras-chave: antioxidative enzymes; germination; Glycine max, reactive oxygen species; vigor.

Resumo

Weathering deterioration affects seed quality, especially in areas with excessive rainfall. This study aimed to evaluate the oxidative stress, physiological quality, and protein metabolism of seeds of different soybean cultivars under weathering deterioration at the pre-harvest phase. Six soybean cultivars (BMX Apolo, DM 6563, NS 5959, NA 5909, BMX Potência, and TMG 1175) were subjected to simulated rainfall at the R8 stage. Each level was divided into two applications at 72-h intervals: 60 mm (30 + 30), 120 mm (60 + 60), and 180 mm (90 + 90). Then, the seeds were harvested and evaluated for physiological potential, antioxidative enzymes, hydrogen peroxide, malondialdehyde, proteins, and protease activity. The simulated rainfall allowed the variation in seed moisture, promoting a significant reduction in germination and seed vigor, especially at 120 and 180 mm levels. There were also reductions in antioxidative enzyme activity with weathering deterioration (mainly for catalase, ascorbate peroxidase, and peroxidase), accumulation of hydrogen peroxide and malondialdehyde, and reductions in protein content and protease activity. The proposed rainfall system is efficient in inducing weathering deterioration during the pre-harvest phase and its deleterious effects. Weathering deterioration in soybean seeds in the pre-harvest stage is directly influenced by genotype.

Downloads

Não há dados estatísticos.

Referências

Associação Brasileira de Sementes e Mudas [Abrasem]. (2013). Instrução Normativa no 45. Padrões para a produção e a comercialização de sementes de soja (Glycine max L.). Brasília, DF: MAPA.

Anderson, M. D., Prasad, T. K., & Stewart, C. R. (1995). Changes in isozyme profiles of catalase, peroxidase, and glutathione reductase during acclimation to chilling in mesocotyls of maize seedlings. Plant Physiology, 109(4), 1247-1257. DOI: https://doi.org/10.1104/pp.109.4.1247

Basso, D. P., Hoshino-Bezerra, A. A., Sartori, M. M. P., Buitink, J., Leprince, O., & Silva, E. A. A. D. (2018). Late seed maturation improves the preservation of seedling emergence during storage in soybean. Journal of Seed Science, 40(2), 185-192. DOI: https://doi.org/10.1590/2317-1545v40n2191893

Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44(1), 276-287. DOI: https://doi.org/10.1016/0003-2697(71)90370-8

Bernardo, S., Mantovani, E. C., Silva, D. D., & Soares, A. A. (2019). Manual de irrigação. Viçosa, MG: UFV.

Bianchi, M. C., Bruzi, A. T., Soares, I. O., Ribeiro, F. D. O., & Gesteira, G. D. S. (2020). Heritability and the genotype × environment interaction in soybean. Agrosystems, Geosciences & Environment, 3(1), 1-10. DOI: https://doi.org/10.1002/agg2.20020

Bhatia, V.S., Yadav, S., Jumrani, K., & Guruprasad. (2010). Field deterioration of soybean seed: role of oxidative stresses and antioxidant defense mechanism. Journal of Plant Biology, 32(2), 179-190.

Boniecka, J., Kotowicz, K., Skzypek, E., Dziurka, K., Rewers, M., Jedzejczyk, I., ... Dabrowska, G. (2019). Potential biochemical, genetic and molecular markers of deterioration advancement in seeds of oilseed rape (Brassica napus L.). Industrial Crops and Products, 130(2019), 478-490. DOI: https://doi.org/10.1016/j.indcrop.2018.12.098

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. DOI: https://doi.org/10.1016/0003-2697(76)90527-3

Brasil. Ministério da Agricultura, Pecuária e Abastecimento. (2009). Regras para análise de sementes. Brasília, DF: MAPA/ACS.

Cakmak, I., & Horst, W. J. (1991). Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiologia Plantarum, 83(3), 463-468. DOI: https://doi.org/10.1111/j.1399-3054.1991.tb00121.x

Castro, E. M., Oliveira, J. A., Lima, A. E. D., Santos, H. O. D., & Barbosa, J. I. L. (2016). Physiological quality of soybean seeds produced under artificial rain in the pre-harvesting period. Journal of Seed Science, 38(1), 14-21. DOI: https://doi.org/10.1590/2317-1545v38n1154236

Das, K., & Roychoudhury, A. (2014). Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in Environmental Science, 2(53), 1-13. DOI: https://doi.org/10.3389/fenvs.2014.00053

Ebone, L. A., Caverzan, A., & Chavarria, G. (2019). Physiologic alterations in orthodox seeds due to deterioration processes. Plant Physiology and Biochemistry, 145(2019), 34-42. DOI: https://doi.org/10.1016/j.plaphy.2019.10.028

Ebone, L. A., Caverzan, A., Silveira, D. C., Siqueira, L. D. O., Lângaro, N. C., ... Chavarria, G. (2020). Biochemical profile of the soybean seed embryonic axis and its changes during accelerated aging. Biology, 9(8), 186. DOI: https://doi.org/10.3390/biology9080186

Forti, V. A., Carvalho, C., Tanaka, F. A. O., & Cicero, S. M. (2013). Weathering damage in soybean seeds: assessment, seed Anatomy and seed physiological potential. Seed Technology, 35(2), 213-224. DOI: https://www.jstor.org/stable/24642271

Gay, C., & Gebicki, J. M. (2000). A critical evaluation of the effect of sorbitol on the ferric–xylenol orange hydroperoxide assay. Analytical Biochemistry, 284(2), 217-220. DOI: https://doi.org/10.1006/abio.2000.4696

Gesteira, G. S., Bruzi, A. T., Zito, R. K., Fronza, V., & Arantes, N. E. (2018). Selection of early soybean inbred lines using multiple indices. Crop Science, 58(6), 2494-2502. DOI: https://doi.org/10.2135/cropsci2018.05.0295

Gill, S. S., Anjum, N. A., Gill, R., Yadav, S., Hasanuzzaman, M., Fujita, M., ... Tuteja, N. (2015). Superoxide dismutase-mentor of abiotic stress tolerance in crop plants. Environmental Science and Pollution Research, 22(14), 10375-10394. DOI: https://doi.org/10.1007/s11356-015-4532-5

Huth, C., Mertz-Henning, L. M., Lopes, S. J., Tabaldi, L. A., Rossato, L. V., Krzynawoski, F. C., & Henning, F. A. (2016). Susceptibility to weathering damage and oxidative stress on soybean seeds with different lignin contents in the seed coat. Journal of Seed Science, 38(4), 296-304. DOI: https://doi.org/10.1590/2317-1545v38n4162115

Kapoor, D., Singh, S., Kumar, V., Romero, R., Prasad, R., & Singh, J. (2019). Antioxidant enzymes regulation in plants in reference to reactive oxygen species (ROS) and reactive nitrogen species (RNS). Plant Gene, 19(7), 100182. DOI: https://doi.org/10.1016/j.plgene.2019.100182

Kar, M., & Mishra, D. (1976). Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence. Plant Physiology, 57(2), 315-319. DOI: https://doi.org/10.1104/pp.57.2.315

Kuo, M. C., & Kao, C. H. (2003). Aluminum effects on lipid peroxidation and antioxidative enzyme activities in rice leaves. Biologia Plantarum, 46(1), 149-152. DOI: https://doi.org/10.1023/A:1022356322373

Lv Y., Tian, P., Zhang, S., Wang, J., & Hu, Y. (2018). Dynamic proteomic changes in soft wheat seeds during accelerated ageing. PeerJ, 6, 1-16. DOI: https://doi.org/10.7717/peerj.5874

Marcos-Filho, J. (2016). Seed physiology of cultivated plant. Londrina, PR: ABRATES.

Min, C. W., Kim, Y. J., Gupta, R., Kim, S. W., Han, W. Y., Ko, J. M., ... Kim, S. T. (2016). High-throughput proteome analysis reveals changes of primary metabolism and energy production under artificial aging treatment in Glycine max seeds. Applied Biological Chemistry, 59(6), 841-853. DOI: https://doi.org/10.1007/s13765-016-0234-z

Min, C. W., Lee, S. H., Cheon, Y. E., Han, W. Y., Ko, J. M., Kang, H. W., ... Kim, S. T. (2017). In-depth proteomic analysis of Glycine max seeds during controlled deterioration treatment reveals a shift in seed metabolism. Journal of Proteomics, 169, 125-135. DOI: https://doi.org/10.1016/j.jprot.2017.06.022

Mittler, R. (2017). ROS are good. Trends in Plant Science, 22(1), 11-19. DOI: https://doi.org/10.1016/j.tplants.2016.08.002

Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22(5), 867-880. DOI: https://doi.org/10.1093/oxfordjournals.pcp.a076232

Noctor, G., Reichheld, J. P., & Foyer, C. H. (2018). ROS-related redox regulation and signaling in plants. Seminars in Cell & Developmental Biology, 80, 3-12. DOI: https://doi.org/10.1016/j.semcdb.2017.07.013

Ochandio, D., Bartosik, R., Gastón, A., Abalone, R., Barreto, A. A., & Yommi, A. (2017). Modelling respiration rate of soybean seeds (Glycine max (L.)) in hermetic storage. Journal of Stored Products Research, 74, 36-45. DOI: https://doi.org/10.1016/j.jspr.2017.09.001

Peixoto, P. H. P., Cambraia, J., Sant’anna, R., Mosquim, P. R, & Moreira, M. A. (1999). Aluminum effects on lipid peroxidation and on the activities of enzymes of oxidative metabolism in sorghum. Revista Brasileira de Fisiologia Vegetal, 11(3), 137-143.

Pinheiro, D. T., Dias, D. C. F. D. S., Medeiros, A. D. D., Ribeiro, J. P. O., Silva, F. L. D., & Silva, L. J. (2021). Weathering deterioration in pre-harvest of soybean seeds: physiological, physical, and morpho-anatomical changes. Scientia Agricola, 78(suppl. 1), e20200166. DOI: https://doi.org/10.1590/1678-992X-2020-0166

Pilon, A. M., Oliveira, M. G. A., & Guedes, R. N. C. (2006). Protein digestibility, protease activity, and post-embryonic development of the velvetbean caterpillar (Anticarsia gemmatalis) exposed to the trypsin-inhibitor benzamidine. Pesticide Biochemistry and Physiology, 86(1), 23-29. DOI: https://doi.org/10.1016/j.pestbp.2005.11.005

Prado, J. P., Krzyzanowski, F. C., Martins, C. C., & Vieira, R. D. (2019). Physiological potential of soybean seeds and its relationship to electrical conductivity. Journal of Seed Science, 41(4), 407-415. DOI: https://doi.org/10.1590/2317-1545v41n4214988

R Core Team. (2019). R: A language and environment for statistical computing. Vienna, AT: R Development Core Team.

Ratajczak, E., Malecka, A., Ciereszko, I., & Staszak, A. M. (2019). Mitochondria are important determinants of the aging of seeds. International Journal of Molecular Sciences, 20(7), 1-12. DOI: https://doi.org/10.3390/ijms20071568

Rocha, G., Pireda, S., Araújo, J. S., Oliveira, A. E. A., Machado, O. L. T., Cunha, M., ... Fernandes, K. V. S. (2019). Programmed cell death in soybean seed coats. Plant Science, 288, 110232. DOI: https://doi.org/10.1016/j.plantsci.2019.110232

Sahu, B., Sahu, A. K., Thomas, V., & Naithani, SC. (2017). Reactive oxygen species, lipid peroxidation, protein oxidation and antioxidative enzymes in dehydrating Karanj (Pongamia pinnata) seeds during storage. South African Journal of Botany, 112, 383-390. DOI: https://doi.org/10.1016/j.sajb.2017.06.030

Sano, N., Rajjou, L., North, H. M., Debeaujon, I., Marion-Poll, A., & Seo, M. (2016). Staying alive: Molecular aspects of seed longevity. Plant and Cell Physiology, 57(4), 660-674. DOI: https://doi.org/10.1093/pcp/pcv186

Senda, M., Yamaguchi, N., Hiraoka, M., Kawada, S., Iiyoshi, R., Yamashita K, ... Kawasaki, M. (2017). Accumulation of proanthocyanidins and/or lignin deposition in buff-pigmented soybean seed coats may lead to frequent defective cracking. Planta, 245(3), 659-670. DOI: https://doi.org/10.1007/s00425-016-2638-8

Sharma, S. N., Maheshwari, A., Sharma, C., & Shukla, N. (2018). Gene expression patterns regulating the seed metabolism in relation to deterioration/ageing of primed mung bean (Vigna radiata L.) seeds. Plant Physiology and Biochemistry, 124, 40-49. DOI: https://doi.org/10.1016/j.plaphy.2017.12.036

Shu, Y., Zhou, Y., Mu, K., Hu, H., Chen, M., He, Q., ... Yu, X. (2020). A transcriptomic analysis reveals soybean seed pre-harvest deterioration resistance pathways under high temperature and humidity stress. Genome, 63(2), 115-124. DOI: https://doi.org/10.1139/gen-2019-0094

Vieira, R. D., & Krzyzanowski, F. C. (1999). Teste de condutividade elétrica. In F. C. Krzyzanowski, R. D. Vieira, & J. B. França Neto (Eds.), Vigor de sementes: conceitos e testes ((Cap. 4, p. 1-26). Londrina, PR: Abrates.

Wang, L., Ma, H., Song, L., Shu, Y., & Gu, W. (2012). Comparative proteomics analysis reveals the mechanism of pre-harvest seed deterioration of soybean under high temperature and humidity stress. Journal of Proteomics, 75(7), 2109-2127. DOI: https://doi.org/10.1016/j.jprot.2012.01.007

Wojtyla, Ł., Lechowska, K., Kubala, S., & Garnczarska, M. (2016). Different modes of hydrogen peroxide action during seed germination. Frontiers in Plant Science, 7(66), 1-16. DOI: https://doi.org/10.3389/fpls.2016.00066

Zhang, H., He, D., Li, M., & Yang, P. (2017). Carbonylated protein changes between active germinated embryos and quiescent embryos give insights into rice seed germination regulation. Plant Growth Regulation, 83(2), 335-350, 2017. DOI: https://doi.org/10.1007/s10725-017-0299-7

Zhang, Q., Tu, B., Liu, C., & Liu, C. 2018. Pod anatomy, morphology and dehiscing forces in pod dehiscence of soybean (Glycine max (L.) Merrill). Flora, 248, 48-53. DOI: https://doi.org/10.1016/j.flora.2018.08.014

Publicado
2022-11-22
Como Citar
Pinheiro, D. T., Dias, D. C. F. dos S., Silva, L. J. da, Martins, M. S., & Finger, F. L. (2022). Oxidative stress, protein metabolism, and physiological potential of soybean seeds under weathering deterioration in the pre-harvest phase. Acta Scientiarum. Agronomy, 45(1), e56910. https://doi.org/10.4025/actasciagron.v45i1.56910
Seção
Produção Vegetal

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus