Addition of amendments to restore a compacted soil under no-tillage system
Resumo
The addition of organic and inorganic amendments can improve soil structure and reduce soil compaction. In this context, this study aimed to evaluate whether the application of amendments reduces penetration resistance (PR) in the short term and describe the spatial variability of PR in the surface horizon of an Aquic Argiudoll under no-tillage in northeast Argentina. Four treatments, consisting of surface applications of 7.5 Mg ha−1 poultry litter (PL), 3.0 Mg ha−1 gypsum (G), the combination of PL+G, and untreated control (T), were arranged in a complete randomized block design with three replications. Two more treatments were added to the experiment 12 months later, consisting of PL reapplications on half of the surface of the PL+G and PL treatments (PL+G+PL and PL+PL, respectively) in a split-plot design with three replications in 4×20-m plots. PR was determined in the field with an Eijkelkamp penetrologger following a 2-m long transect perpendicular to the sowing direction at 10 different spots separated 0.2 m from each other. The spatial variability was quantified for each treatment using semivariograms. The highest PR was observed in the T treatment (1.96 MPa) and the lowest PR in PL+G+PL (0.21 MPa). All treatments showed a high spatial dependence (94.9 to 99.9%). Treatments with PL reapplication (PL+PL and PL+G+PL) showed profiles with lower PR and more homogeneous kriging maps. PL reapplication on PL treatments showed no effects on PR values. However, PL reapplication on the PL+G treatment led to positive effects in all PR ranges. Thus, the PL+G+PL treatment, which had the highest PR values, showed a decrease in PR from 54.17 to 6.65% with the reapplication 12 months later. The addition of organic and inorganic amendments reduced specific compacted soil areas on the surface horizon of an Aquic Argiudoll under no-tillage.
Downloads
Referências
Alves, G. M. S., Figueiredo, G. S., Oliveira, T. C., Grego, C. R., & Silva, P. C. L. (2018). Variabilidade espacial da resistência mecânica à penetração de um solo cultivado com cana-de-açúcar. Scientia Agraria, 17(1), 59-66.
Arshad, M. A., Lowery, B., & Grossman, B. (1996). Physical test for monitoring soil quality. In J. W. Doran, & A. J. Jones (Eds.), Methods for assessing soil quality (p. 123-141). Madison, US: Soil Science Society.
Batey, T. (2009). Soil compaction and soil management – A review. Soil Use and Management, 25(4), 335-345. DOI: https://doi.org/10.1111/j.1475-2743.2009.00236.x
Bertol, I., Beutler, J. F., Leite, D., & Batistela, O. (2001). Propriedades físicas de um cambissolo húmico afetadas pelo tipo de manejo do solo. Scientia Agricola, 58(3), 555-560. DOI: https://doi.org/10.1590/S0103-90162001000300018
Boizard, H., Yoon, S. W., Leonard, J., Lheureux, S., Cousin, I., Roger-Estrade, J., & Richard, G. (2013). Using a morphological approach to evaluate the effect of traffic and weather conditions on the structure of a loamy soil in reduced tillage. Soil and Tillage Research, 127, 34-44. DOI: https://doi.org/10.1016/j.still.2012.04.007
Bonnin, J. J., Mirás-Avalos, J. M., Lanças, K. P., Paz González, A., & Vieira, S. R. 2010. Spatial variability of soil penetration resístanse influenced by season of sampling. Bragantia, 69(Suplemento), 163-173. DOI: https://doi.org/10.1590/S0006-87052010000500017
Campos, M. C. C., Aquino, R.E., Oliveira, I. A., & Bergamin, A.C. (2013). Variabilidade espacial da resistência mecânica do solo à penetração e umidade do solo em área cultivada com cana-de-açúcar na região de Humaitá, Amazonas, Brasil. Agraria, 8(2), 305-310. DOI: https://doi.org/10.5039/agraria.v8i2a2091
Clapp, C. E., Stark, S. A., Clay, D. E., & Larson, W. E. (1986). Sewage sludge organic matter and soil properties. In: Y. Chen, & Y. Avnimelech (Eds.), The role of organic matter in modern agriculture (p. 88–97). Dordrecht, NT: Martinus Nijhoff Publishers.
Corado Neto, F. C., Sampaio, F. M. T., Veloso, M. E. C., Matias, S. S. R., Andrade, F. R., & Lobato, M. G. R. (2015). Variabilidade espacial da resistência à penetração em neossolo litólico degradado. Revista Brasileira de Ciencia do Solo, 39(5), 1353-1361. DOI: https://doi.org/10.1590/01000683rbcs20140692
Dalchiavon, F. C., Carvalho, M. P., Andreotti, M., & Montanari, R. (2012). Variabilidade espacial de atributos da fertilidade de um Latossolo Vermelho Distroférrico sob sistema plantio direto. Revista Ciência Agronômica, 43(3), 453-461.
Dalchiavon, F. C., & Carvalho, M. P. (2012). Correlação linear e espacial dos componentes de produção e produtividade da soja. Semina, 33(2), 541-552. DOI: https://doi.org/10.5433/1679-0359.2012v33n2p541
da Silva, A.P., & Kay, B.D., 1996. The sensitivity of shoot growth of corn to the least limiting water range of soils. Plant and Soil, 184, 323-329. DOI: https://doi.org/10.1007/BF00010461
Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., Gonzalez, L., Tablada, M., & Robledo, C. W. (2017). InfoStat versión 2017. Grupo InfoStat, FCA. Cordoba, AR: Universidad Nacional de Córdoba. Retrieved on Dec. 10, 2020 from http://www.infos tat.com.ar
Dontsova, K. M., Darrell Norton, L., Johnston, C. T., & Bigham, J. M. (2004). Influence of exchnageable cations on water adsorption by soil clays. Soil Science Society of America Journal, 68(4), 1218-1227. DOI: https://doi.org/10.2136/sssaj2004.1218
Gabioud, E., Sasal, M. C., Wilson, M. G., Seehaus, M., Van Opstal, N., Beghetto, S. M., & Wingeyer, A. B. (2019). Addition of organic and inorganic amendments to regenerate the surface structure of silty soils. Soil Use and Management, 36(3), 449-458. DOI: https://doi.org/10.1111/sum.12567
Gao, W., Hodgkinson, L., Jin, K., Watts, C. W., Ashton, R. W., Shen, J., … Phillips, A. L. (2016). Deep roots and soil structure. Plant, Cell and Environment, 39(8), 1662-1668. DOI: https://doi.org/10.1111/pce.12684
Golden Software. (2002). Surfer for Windows version 8.0. Colorado, US: Golden.
Hussein, J., & Adey, M. A. (1998). Changes in microstructure, voids and b-fabric of surface samples of a Vertisol caused by wet/dry cycles. Geoderma, 85(1), 63-82. DOI: https://doi.org/10.1016/S0016-7061(98)00014-7
Kuhwald, M., Blaschek, M., Minkler, R., Nazemtseva, Y., Schwanebeck, M., Winter, J., & Duttmann, R. (2016). Spatial analysis of long-term effects of different tillage practices based on penetration resistance. Soil Use and Management, 32(2), 240-249. Doi: https://doi.org/10.1111/sum.12254
Letey, J. (1985). Relationship between soil properties and crop production. Advances in Soil Science, 1, 277-294. DOI: https://doi.org/10.1007/978-1-4612-5046-3_8
McBratney, A. B., & Webster, R. (1985). Choosing functions for semi-variograms of soil properties and fitting them to sampling estimates. Journal of Soil Science, 37(4), 617-639. DOI: https://doi.org/10.1111/j.1365-2389.1986.tb00392.x
McCray, J. M., Summer, M. E., Radcliffe, D. E., & Clark, R. L. (1991). Soil Ca, Al, acidity and penetration resistance with subsoiling, lime and gypsum treatments. Soil Use and Management, 7(4), 193-199. DOI: https://doi.org/10.1111/j.1475-2743.1991.tb00874.x
Miola, E. C. C., Pauletto, E. A., Lima, C. L. R., Pinto, L. F. S., & Timm, L. C. (2015). Intervalo hídrico ótimo em solo construído após mineração de carvão em diferentes limites críticos de resistência à penetração e umidade. Revista Brasileira de Ciência do Solo, 39, 563-572. DOI: https://doi.org/10.1590/01000683rbcs20140184
Nagahama, H. J., Cortez, J. W., Pimenta, W. A., Patrocínio Filho, A. P., & Souza, E. B. (2016). Resistência do solo à penetração em sistemas de preparo e velocidades de deslocamento do trator. Comunicatta Scientiae, 7(1), 56-65. DOI: https://doi.org/10.14295/cs.v7i1.439
Norton, L. D. (2008). Gypsum soil amendment as a management practice in conservation tillage to improve water quality. Journal of Soil and Water Conservation, 63(2), 46-48.
Norton, L. D., & Dontsova, K. M. (1998). Use of soil amendments to prevent soil surface sealing and control erosion. Advances in Geoecology, 31, 581-587.
Orellana, J., & Pilatti M. (1990). Aplicación de enmiendas cálcicas en un horizonte B2t. Ciencia del Suelo, 8(2), 127-139. DOI: https://doi.org/10.14409/fa.v11i1.4146
Piccolo, A., & Mbagwu, J. S. C. (1990). Effects of different organic waste amendments on soil microaggregates stability and molecular sizes of humic substances. Plant and Soil, 123, 27-37. DOI: https://doi.org/10.1007/BF00009923
Pimentel-Gomes, F. P., & García, C. H. (2002). Estatística aplicada a experimentos agronômicos e florestais. Piracicaba, SP: Fealq.
Rauber, L. P., Piccolla, C. D., Andrade, A. P., Friederichs, A., Mafra, A. L., Corrêa, J. C., & Albuquerque, J. A. (2012). Physical properties and organic carbon content of a rhodic kandiudox fertilized with pig slurry and poultry litter. Revista Brasileira de Ciência do Solo. 36(4),1323-1332. DOI: https://doi.org/10.1590/S0100-06832012000400026
Reicosky, C., & Saxton, K. E. (2007). The benefits of no-tillage (2nd ed.). In C. J. Baker, K. E. Saxton, W. R. Ritchie, D. Chamen, C. Reicosky, M. F. Ribeiro, S. E. Justice, & P. R. Hobbs (Eds.), No-tillage seeding in conservation agriculture (p. 11-20). Wallingford, UK: CABI.
Robertson, G. P. (2004). GS+: geoestatistics for the environmental sciences – GS+ user´s guide. Plainwell, US: Gamma Desing Software.
Roldán, A., Caravaca, F., Hernández, M. T., García, C., Sánchez-Brito, Velásquez, C., & Tiscareño, M. (2003). No-tillage, crop residue additions, and legume cover cropping effects on soil quality characteristics under maize in Patzcuaro Watershed (Mexico). Soil and Tillage Research, 72(1), 65-73. DOI: https://doi.org/10.1016 / S0167-1987 (03) 00051-5
Sadras, V. C., O'Leary, G. J., & Roget, D. K., 2005. Crop responses to compacted soil: capture and efficiency in the use of water and radiation. Field Crops Research, 91(2-3), 131-148. DOI: https://doi.org/10.1016/j.fcr.2004.06.011
Sasal, M. C., Boizard, H., Andriulo, A., Wilson, M., & Léonard, J. (2017a). Platy structure development under no-tillage in the northern humid Pampas of Argentina and its impact on runoff. Soil & Tillage Research, 173, 33-41. DOI: https://dx.doi.org/10.3232/SJSS.2018.V8.N2.06
Sasal, M. C., Léonard J., Andriulo, A., & Boizard, H. (2017b). A contribution to understanding the origin of platy structure in silty soils under no tillage. Soil & Tillage Research, 173, 42-48. DOI: https://dx.doi.org/10.1016/j.still.2016.08.017
Sasal, M. C., Andriulo, A. E., Ullé, J., Abrego, F., & Bueno, M. (2000). Efecto de diferentes enmiendas sobre algunas propiedades edáficas, en sistemas de producción hortícola del centro norte de la región pampeana. Ciencia del Suelo, 18, 95-104.
Schlotzhaver, S. D., & Littell, R. C. (1997). SAS: System for elementary statistical analysis (2nd ed.). Cary, US: [s.ed.].
Senigagliesi, C., & Ferrari, M. (1993). Soil and crop responses to alternative tillage practices. In D. R. Buxton, R. Shibles, R. A. Forsberg, B. L. Blad, K. H. Asay, G. M. Paulsen, & R. F. Wilson (Eds), International Crop Science I (p. 27-35). Wisconsin, US: Crop Science Society of America, Inc.
Severiano, E. C., Oliveira, G. C., Dias Junior, M. S., Castro, M. B., Oliveira, L. F. C., & Costa, K. A. P. (2010). Compactação de solos cultivados com cana-de-açúcar: II - quantificação das restrições às funções edáficas do solo em decorrência da compactação prejudicial. Engenharia Agrícola, 30(3), 414-423. DOI: https://doi.org/10.1590/S0100-69162010000300006
Silva, W. R. N., Nunes, M. C. M., Caldeira, D. S. A., Arantes, E. M., & Souza, L. H. C. (2012). Resistência à penetração de um latossolo vermelho sob cultivo de cana-de-açúcar em diferentes manejos. Revista Agrotecnologia, 3(2), 49-61. DOI: http:// doi.org/10.12971/2179-5959.v03n02a05
Stefanoski, D. C., Santos, G. S., Marchão, R. L., Petter, F. A., & Pacheco, L.P. (2013). Uso e manejo do solo e seus impactos sobre a qualidade física. Revista Brasileira de Engenharia Agrícola e Ambiental, 17, 1301-1309. DOI: https://doi.org/10.1590/S1415-43662013001200008
Soil Survey Staff. (2010). Keys to Soil Taxonomy (11th ed.). Whashington, D.C.: United States Departament of Agriculture; Natural Resources Conservation Service.
Taboada, M. A., Micucci, F. G., Consentino D. J., & Lavado, R. S. (1998). Comparison of compaction induced by conventional and zero tillage in two soils of the Rolling Pampa of Argentina. Soil & Tillage Research, 49(1-2), 57-63. DOI: https://doi.org/10.1016/s0167-1987(98)00132-9
Taylor, H. M., & Gardner, H. R. (1963). Penetration of cotton seedling taproots as influenced by bulk density, moisture content and strength of soil. Soil Science, 96, 153-156. DOI: https://doi.org/10.1097/00010694-196309000-00001
Tester, C. G. (1990). Organic amendment effects on physical and chemical properties of a sandy soil. Soil Science Society of America Journal, 54(3), 827-831. DOI: https://doi.org/10.2136/sssaj1990.03615995005400030035x
Tisdall J. M., & Oades, J. M. (1982). Organic matter and water-stable aggregates in soils. European Journal of Soil Science, 33(2), 141-163. DOI: https://doi.org/10.1111/j.1365-2389.1982.tb01755.x
Unc, A., & Goss, M. J. (2006). Impact of organic waste amendments on soil hydraulic properties and on water partitioning. Journal of Environmental Engineering and Science, 5(3), 243-251. DOI: https://doi.org/10.1139/s05-018
Vieira, S. R., Hatfield, J. L., Nielsen, D. R., & Biggar, J. W. (1983). Geostatistical theory and application to variability of some agronomical properties. Hilgardia, 51(1), 1-75. DOI: https://doi.org/10.3733/hilg.v51n03p075
Vieira, S. R., Nielsen, D. R., & Biggar, J. W. (1981). Spatial variability of field-measured infiltration rate. Madison. Soil Science Society of America Journal, 45(6), 1040-1048. DOI: https://doi.org/10.2136/sssaj1981.03615995004500060007x
Webster, R., & Oliver, M. A. (1990). Statistical methods in soil and land resource survey. Oxford, UK: Oxford University Press.
Wilson, M. G., & Cerana, J. (2004). Mediciones físicas en suelos con características vérticas. Revista Científica Agropecuaria, 8(1), 11-22.
Wilson, M. G., Mirás-Avalos, J. M., Lado, M., & Paz-González, A. (2016). Multifractal analysis of vertical profiles of soil penetration resistance at varying water contents. Vadose Zone Journal, 15(2), 1-10. DOI: https://doi.org/10.2136/vzj2015.04.0063
DECLARAÇÃO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.