Graphite action on the longitudinal distribution of soybean seeds in mechanical and pneumatic feeders

Palavras-chave: precision; resting angle; solid lubricant; seeder.

Resumo

The use of powdered graphite as a solid lubricant to reduce friction among soybean seeds during mechanical sowing aims to facilitate the seed flow into the seed reservoir, while reducing mechanical damage to the seed. The objective of this study was to evaluate the influence of graphite on the longitudinal deposition of soybean seeds using mechanical and pneumatic feeders at different distribution velocities. The experiment was performed on a static simulation-test bench, with a completely randomized design with two varying factors: graphite dose (0, 1, 2, 4, and 8 g kg-1 seed) and distribution velocity (5, 7, 9, and 11 km h-1 for the pneumatic feeder; and 3, 5, 7, and 9 km h-1 for the mechanical feeder). To assess the homogeneity of seed distribution, the frequency of parameters such as double, flawed, and acceptable spacings, coefficient of variation, and precision index were evaluated from five repetitions of 250 spacing each. For the pneumatic feeder, the optimal values to maximize precision of seed deposition were 4.6 g kg-1 and 6.7 km h-1 of graphite dose and distribution velocity, respectively. In turn, the optimal values to minimize undesirable spacing while maximizing accuracy with the mechanical feeder were 4.9±0.6 g kg-1 and 4.9±0.3 km h-1. Overall, regardless of feeding mechanism, the use of graphite promoted greater efficiency in the distribution of seeds owing to the higher level of fluidity inside the reservoir; however, high doses can cause the opposite effect. In addition, an excessive increase in speed influenced seed distribution negatively.

Downloads

Não há dados estatísticos.

Referências

Al-Hashemi, H. M. B., & Al-Amoudi, O. S. B. (2018). A review on the angle of repose of granular materials. Powder Technology, 330, 397-417. DOI: https://doi.org/10.1016/j.powtec.2018.02.003

Alonço, P. A., Alonço, A. S., Moreira, A. R., Carpes, D. P., & Pires, A. P. (2018). Distribuição longitudinal de sementes de soja com diferentes tratamentos fitossanitários e densidades de semeadura. Revista Engenharia na Agricultura, 26(1), 58-67. DOI: https://doi.org/10.13083/reveng.v26i1.851

Aykas, E., Yalçin, H., & Yazgi, A. (2013). Balta tipi gömücü ayağa sahip tek dane ekim makinalarının farklı bölgelerde mısır ekiminde ekim performanslarının karşılaştırılması. Tarım Makinaları Bilimi Dergisi, 9(1), 67-72.

Badua, S. A., Sharda, A., Strasser, R., Cockerline, K., & Ciampitti, I. A. (2019). Comparison of soy protein based and commercially available seed lubricants for seed flowability in row crop planters. Applied Engineering in Agriculture, 35(4), 593-600. DOI: https://doi.org/10.13031/aea.13174

Carpes, D. P., Alonço, A. S., Francetto, T. R., Franck, C. J., Bellé M. P, & Machado, O. D. C. (2016). Effect of different conductor tubes on the longitudinal distribution of soybean seeds. Australian Journal of Crop Science, 10(8), 1144-1150.

Cay, A., Kocabiyik, H., & May, S. (2018). Development of an electro-mechanic control system for seed-metering unit of single seed corn planters Part I: Design and laboratory simulation. Computers and Electronics in Agriculture, 144, 71-79. DOI: https://doi.org/10.1016/j.compag.2017.11.035

Cay, A., Kocabiyik, H., Karaaslan, B., May, S., & Khurelbaatar, M. (2017). Development of an opto-electronic measurement system for planter laboratory tests. Measurement, 102, 90-95. DOI: https://doi.org/10.1016/j.measurement.2017.01.060

Dias, V. O., Alonço, A. S., Carpes, D. P., Veit, A. A., & Souza, L. B. (2014). Peripheral speed of the plate in seed meters of corn and soybean. Ciência Rural, 44(11), 1973-1979. DOI: https://doi.org/10.1590/0103-8478cr20121201

Guo, Z., Chen, X., Liu, H., Guo, Q., Guo, X., & Lu, H. (2014). Theoretical and experimental investigation on angle of repose of biomass–coal blends. Fuel, 116, 131-139. DOI: https://doi.org/10.1016/j.fuel.2013.07.098

Hentschke, C. (2002). Cultura do milho: planejamento do plantio. Seed News, 4, 18-20.

ISO 7256/1-1984(E) Standard. (1984). Sowing equipment-test methods e Part one, single seed drills (precision drills), 7256/1. Geneva, SW: International Organisation for Standardization.

Ivancan, S., Sito, S., & Fabijanić, G. (2004). Effect of precision drill operating speed on the intra-row seed distribution for parsley. Biosystems Engineering, 89(3), 373-376. DOI: https://doi.org/10.1016/j.biosystemseng.2004.07.007

Jasper, R., Janszen, U., Jasper, M., & Garcia, L. C. (2006). Distribuição longitudinal e germinação de sementes de milho com emprego de tratamento fitossanitário e grafite. Engenharia Agrícola, 26(1), 292-299. DOI: https://doi.org/10.1590/S0100-69162006000100031

Jasper, S. P., Bueno, L. S. R., Laskoski, M., Langhinotti, C. W., & Parize, G. L. (2016). Desempenho do trator de 157KW na condição manual e automático de gerenciamento de marchas. Revista Scientia Agraria, 17(3), 55-60. DOI: http://dx.doi.org/10.5380/rsa.v17i3.50998

Karimi, H., Navid, H., Besharati, B., Behfar, H., & Eskandari, I. (2017). A practical approach to comparative design of non-contact sensing techniques for seed flow rate detection. Computers and Electronics in Agriculture, 142, 165-172. DOI: https://doi.org/10.1016/j.compag.2017.08.027

Kostić, M., Rakić, D., Radomirović, D., Savin, L., Dedović, N., Crnojević, V., & Ljubičić, N. (2018). Corn seeding process fault cause analysis based on a theoretical and experimental approach. Computers and Electronics in Agriculture, 151, 207-218. DOI: https://doi.org/10.1016/j.compag.2018.06.014

Kumar, R., & Raheman, H. (2018). Detection of flow of seeds in the seed delivery tube and choking of boot of a seed drill. Computers and Electronics in Agriculture, 153, 266-277. DOI: https://doi.org/10.1016/j.compag.2018.08.035

Mangus, D. L., Sharda, A., Flippo, D., Strasser, R., & Griffin, T. (2017). Development of high-speed camera hardware and software package to evaluate real-time electric seed meter accuracy of a variable rate planter. Computers and Electronics in Agriculture, 142, 314-325. DOI: https://doi.org/10.1016/j.compag.2017.09.014

Mantovani, E. C., Mantovani, B. H. M., Cruz, I., Mewes, W. L. C., & Oliveira, A. C. (1999). Desempenho de dois sistemas distribuidores de sementes utilizados em semeadoras de milho. Pesquisa Agropecuária Brasileira, 34(1), 93-8. DOI: https://doi.org/10.1590/S0100-204X1999000100013

Nejadi, J., & Raoufat, M. H. (2013). Field performance of a pneumatic row crop planter equipped with active toothed coulter for direct planting of corn in wheat residue. Spanish Journal of Agricultural Research, 11(2), 327-334. DOI: https://doi.org/10.5424/sjar/2013112-2632

Okopnik, D. L., & Falate, R. (2014). Usage of the DFRobot RB-DFR-49 Infrared Sensor to detect maize seed passage on a conveyor belt. Computers and Electronics in Agriculture, 102, 106-111. DOI: https://doi.org/10.1016/j.compag.2014.01.012

Savi, D., Kmiecik, L. L., Strapasson Neto, L., Silva, T. X. D., & Jasper, S. P. (2020). Influence of seed tube curvature on seed longitudinal distribution. Engenharia Agrícola, 40(6), 732-739. DOI: https://doi.org/10.1590/1809-4430-eng.agric.v40n6p732-739/2020

Sidhu, H., Monono, E., Bora, G., & Wiesenborn, D. (2017). Performance of coated extra-large hulled confectionary sunflower kernels for precision planting. Agricultural Research, 6(4), 347-358. DOI: https://doi.org/10.1007/s40003-017-0285-3

Soyoye, B. O., Ademosun, O. C., & Agbetoye, L. A. (2018). Determination of some physical and mechanical properties of soybean and maize in relation to planter design. Agricultural Engineering International: CIGR Journal, 20(1), 81-89.

Tourino, M. C. C., Rezende, P. M., & Salvador, N. (2002). Espaçamento, densidade e uniformidade de semeadura na produtividade e características agronômicas da soja. Pesquisa Agropecuária Brasileira, 37(8), 1071-1077. DOI: https://doi.org/10.1590/S0100-204X2002000800004.

Virk, S. S., Fulton, J. P., Porter, W. M., & Pate, G. L. (2020). Row-crop planter performance to support variable-rate seeding of maize. Precision Agriculture, 21(3), 603-619. DOI: https://doi.org/10.1007/s11119-019-09685-3

Yazgi, A. (2016). Effect of seed tubes on corn planter performance. Applied Engineering in Agriculture, 32(6), 783-790. DOI: https://doi.org/10.13031 / aea.32.11274

Publicado
2022-11-22
Como Citar
Savi, D., Jasper, S. P., Zimmermann, G. G., Kmiecik, L. L., Strapasson Neto, L., Sobenko, L. R., Ferraz, R. da S., & Campos, G. S. de. (2022). Graphite action on the longitudinal distribution of soybean seeds in mechanical and pneumatic feeders. Acta Scientiarum. Agronomy, 45(1), e57920. https://doi.org/10.4025/actasciagron.v45i1.57920
Seção
Engenharia Agrícola

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus