Development of interspecific segregating populations of wheat and evaluation of agronomic characteristics and resistance to Fusarium head blight

  • Patricia Frizon Universidade de Passo fundo https://orcid.org/0000-0001-7597-7957
  • Sandra Patussi Brammer Empresa Brasileira de Pesquisa Agropecuária
  • Carolina Cardoso Deuner Universidade de Passo Fundo
  • Amanda Chechi Universidade de Passo Fundo
  • Maria Imaculada Pontes Moreira Lima Empresa Brasileira de Pesquisa Agropecuária
  • Ricardo Lima de Castro Empresa Brasileira de Pesquisa Agropecuária
Palavras-chave: diseased grains; Fusarium graminearum; segregating populations; severity.

Resumo

The objective of this study was to develop segregating wheat populations for resistance to gibberella through the introgression of synthetic wheat genes in traditional cultivars and to present the results using the backcross method. In addition, to evaluate these populations in F1RC2, agronomic aspects and type II and III resistance to Fusarium head blight (FHB). The cultivars BRS Guamirim and BRS 179 were used as male parents and three synthetic wheat cultivars (CIGM90.909, CIGM92.1666, and CIGM93.298) as female parents, both previously characterized for the reaction to FHB. Crossing and backcrossing methodological procedures were performed to provide adequate controlled conditions. The F1 (winter 2016), RC1 (summer 2016/2017), and RC2 (winter 2017) populations were developed through emasculation and pollination procedures. In the winter of 2018, segregating populations were evaluated in the field using a randomized block design. In the three generations developed in a greenhouse, it was observed that the best crossbreeding combinations, verified by the number of grains, were obtained with the male parent BRS 179. Under field conditions, all segregating populations were considered moderately susceptible and susceptible to type II resistance. In type III resistance, all segregating populations, except for CIGM90.909/BRS 179 and BRS 179, showed values above 50%. Thus, it was evident that the crossings performed with the male parent BRS 179 generated better resistance to the disease.

Downloads

Não há dados estatísticos.

Referências

Alves, R. H., Nora, T. D., Franco, F. A., Costa, A. C. T., & Stangarlin, J. R. (2013). Reação de Resistência tipo I e tipo II a Giberela em cultivares de trigo. Summa Phytopathologica, 39(3), 167-171. DOI: https://doi.org/10.1590/S0100-54052013000300004

Bai, G., & Shaner, G. (2004). Management and resistance in wheat and barley to Fusarium head blight. Annual Review of Phytopathology, 42, 135-161. DOI: https://doi.org/10.1146/annurev.phyto.42.040803.140340

Bai, G., & Shaner, G. (1994). Scab of wheat: Prospects for control. Plant Disease, 78(8), 760-765. DOI: https://doi.org/10.1094/PD-78-0760

Barnabás, B., Jäger, K., & Fehér, A. (2008). The effect of drought and heat stress on reproductive processes in cereals. Plant, Cell & Environment, 31(1), 11-38. DOI: https://doi.org/10.1111/j.1365-3040.2007.01727.x

Bornhofen, E., Benin, G., Matei, G., Silva, C. L., Beche, E., Pagliosa, E. S., …. Pinnow, C. (2013). Capacidade de combinação entre genitores de trigo em duas gerações. Semina: Ciências Agrárias, 48(12), 3129-3140. DOI: https://doi.org/10.5433/1679-0359.2013v34n6Supl1p3129

Brasil. Ministério da Agricultura, Pecuária e Abastecimento. (1988). Trigo (Triticum aestivum). Retrived on February 14, 2023 from https://www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios/insumos-agricolas/protecao-de-cultivar/agricolas

Brennan, J. M., Egan, D., Cooke, B. M., & Doohan, F. M. (2005). Effect of temperature on head blight of wheat caused by Fusarium culmorum and F. graminearum. Plant Pathology, 54(2), 156-160. DOI: https://doi.org/10.1111/j.1365-3059.2005.01157.x

Buerstmayr, M., & Buerstmayr, H. (2015). Comparative mapping of quantitative trait loci for Fusarium head blight resistance and anther retention in the winter wheat population Capo × Arina. Theoretical and Applied Genetics, 128(8), 1519-1530. DOI: https://doi.org/10.1007/s00122-015-2527-8

Buerstmayr, M., Steiner, B., & Buerstmayr, H. (2020). Breeding for Fusarium head blight resistance in wheat - progress and challenges. Plant Breeding, 139(3), 429-454. DOI: https://doi.org/10.1111/pbr.12797

Callegari-Jacques, S. M. (2003). Bioestatística - princípios e aplicações. Porto Alegre, RS: Artemed.

Cheng, S., YI, X., Cheng, J., Jiang, Z., Hu, W., Bie, T., & Chen, S. (2018). Genetic analysis of Fusarium head blight resistance in CIMMYT bread wheat line C615 using traditional and conditional QTL mapping. Frontiers in Plant Science, 9, 573.

Coêlho, J. D. (2021). Trigo: produção e mercados. Retrieved on May 28, 2021 from https://www.bnb.gov.br/s482-dspace/bitstream/123456789/636/3/2021_CDS_151.pdf

Cruz, C. D., & Carneiro, P. C. S. (2006). Modelos biométricos aplicados ao melhoramento genético (2. ed.). Lavras, MG: Editora UFV.

Dancey, C., & Reidy, J. (2006). Estatística Sem matemática para psicologia: usando SPSS para Windows. Porto Alegre, RS: Artmed.

Dunckel, S., Crossa, J., Wu, S., Bonnett, D., & Poland, J. (2017). Genomic selection for increased yield in synthetic-derived wheat. Crop Science, 57(2), 713-725. DOI: https://doi.org/10.2135/cropsci2016.04.0209

Elbashir, A. A. E., Gorafi, Y. S. A. G., Tahir, I. S. A., Kim, J. S., & Tsujimoto, H. (2017). Wheat multiple synthetic derivatives: a new source for heat stress tolerance adaptive traits. Breeding Science, 67(3), 248-256. DOI: https://doi.org/10.1270/jsbbs.16204

Faleiro, F. G., Junqueira, N. T. V., & Braga, M. F. (2005). Germoplasma e melhoramento genético do maracujazeiro - desafios da pesquisa. In F.G. Faleiro, N.T.V. Junqueira, & M. F. Braga (Eds.), Maracujá: germoplasma e melhoramento genético (p. 187-210). Planaltina, DF: Embrapa Cerrados.

Gadimaliyeva, G., Aminov, N., Jahangirov, A., Hamidov, H., Abugalieva, A., Shamanin, V. & Morgounov, A. (2018). Productivity and disease resistance of primary hexaploid synthetic wheat lines and their crosses with bread wheat. Cereal Research Communications, 46 (2), 355-364. DOI: https://doi.org/doi.org/10.1556/0806.46.2018.16

Giancaspro, A., Giove, S. L., Zito, D., Blanco, A. & Gadaleta, A. (2016). Mapping QTLs for Fusarium head blight resistance in an interspecific wheat population. Frontiers in Plant Science, 7(1381), 1-13. DOI: https://doi.org/doi.org/10.3389/fpls.2016.01381

Grafius, J. E. (1956). Components of yield in oats: A geometrical interpretation. Agronomy Journal, 48(9), 419-423. DOI: https://doi.org/10.2134/agronj1956.00021962004800090010x

Gunupuru, L. R., Perochon, A., & Doohan, F. M. (2017). Deoxynivalenol resistance as a component of FHB resistance. Tropical Plant Pathology, 42(3), 175-183. DOI: https://doi.org/10.1007/s40858-017-0147-3

Hartel, K. D., Berzonsky, W. A., Kianian, S. F., & Ali, S. (2004). Expression of a Triticum turgidum var. dicoccoides source of Fusarium head blight resistance transferred to synthetic hexaploid wheat. Plant Breeding, 123(6), 516-519. DOI: https://doi.org/10.1111/j.1439-0523.2004.01025.x

He, X. Y., Singh, P. K., Duveiller, E., Dreisigacker, S., & Singh, R. P. (2013). Development and characterization of international maize and wheat improvement center (CIMMYT) germplasm for Fusarium head blight resistance. In T. Alconada Magliano, & S. Chulze (Eds.), Fusarium Head Blight in Latin America (p. 241-262). Dordrecht, NT: Springer.

Jafarzadeh, J., Bonnett, D., Jannink, J. L., Akdemir, D., Dreisigacker, S., & Sorrells, M. E. (2016). Breeding value of primary synthetic wheat genotypes for grain yield. PLoS ONE, 11(9), 1-24. DOI: https://doi.org/10.1371/journal.pone.0162860

Jighly, A., Alagu, M., Makdis, F., Singh, M., Singh, S., Emebiri, L. C., & Ogbonnaya, F. C. (2016). Genomic regions conferring resistance to multiple fungal pathogens in synthetic hexaploid wheat. Molecular Breeding, 36(127), 1-19. DOI: https://doi.org/10.1007/s11032-016-0541-4

Jin, H., Zhang, Y., Li, G., Mu, P., Fan, Z., Xia, X., & He, Z. (2013). Effects of allelic variation of HMW-GS and LMW-GS on mixograph properties and Chinese noodle and steamed bread qualities in a set of Aroona near-isogenic wheat lines. Journal of Cereal Science, 57(1), 146-152. DOI: https://doi.org/10.1016/j.jcs.2012.10.011.

Kohli, M. M. (1989). Control integrado de enfermedades en trigo. In M. Díaz de Ackermann (Ed.), Manejo de enfermedades en cereales de invierno y pastuas (p. 25-41). Montevideo, UR: INIA.

Kuhnem, P., Rosa, A. C., Wagner, F., & Rosa, A. T. S. (2020). Informações Técnicas para Trigo e Triticale: safra 2020. Passo Fundo, RS: Biotrigo Genética.

Large, E. C. (1954). Growth stages in cereals illustration of the feekes scale. Plant Pathology, 3(4), 128-129. DOI: https://doi.org/10.1111/j.1365-3059.1954.tb00716.x

Lima, M. I. P. M. (2007). Protocolo usado na Embrapa Trigo para produção de peritécios de Gibberella zeae em grãos de trigo. Embrapa trigo-comunicado técnico (INFOTECA-E). Retrieved on May 28, 2021 from https://ainfo.cnptia.embrapa.br/digital/bitstream/CNPT-2010/40583/1/p-co218.pdf

Lima, M. I. P. M.; Fernandes, J. M. C.; Picinini, E. C. (2002). Escalonamento da época de semeadura de trigo e uso de cultivares de ciclos reprodutivos diferentes como medida de controle de giberela. Passo Fundo, RS: Embrapa Trigo. (Embrapa Trigo. Comunicado Técnico Online, 92). Retrieved on Feb. 10, 2021 from http://www.cnpt.embrapa.br/biblio/p_co92.htm

Mao, S. L., Wei, Y. M., Cao, W., Lan, X. J., Yu, M., Chen, Z. M., ... Zheng, Y. (2010). Confirmation of the relationship between plant height and Fusarium head blight resistance in wheat (Triticum aestivum L.) by QTL meta-analysis. Euphytica, 174(3), 343-356. DOI: https://doi.org/10.1007/s10681-010-0128-9

Marchioro, V. S., Franco, F. A., Nora, T. D., Oliveira, E. F., Schuster, I., Vieira, E. S. N., & Evangelista, A. (2009) CD 117: nova cultivar de trigo de ampla adaptação. Pesquisa Agropecuária Brasileira, 44(4), 424-426. DOI: https://doi.org/10.1590/S0100-204X2009000400015

Martin, C., Schoeneberg, T., Vogelgsang, S., Vincenti, J., Bertossa, M., & Mascher, F. (2017). Factors of wheat grain resistance to Fusarium head blight. Phytopathologia Mediterranea, 56(1), 154-166. DOI: https://doi.org/10.14601/Phytopathol_Mediterr-20292

McMullen, M., Jones, R., & Gallenberg, D. (1997). Scab of wheat and barley: a re-emerging disease of devastating impact. Plant Disease, 81(12), 1340-1348. DOI: https://doi.org/10.1094/PDIS.1997.81.12.1340

Mendes, G. R. L., Ponte, E. M. D., Feltrin, A. C., Badiale-Furlong, E., & Oliveira, A. Cd (2018). Common resistance to Fusarium head blight in Brazilian wheat cultivars. Scientia Agricola, 75(5), 426-431. DOI: https://doi.org/10.1590/1678-992x-2016-0407.

Mesterházy, A. (1995). Types and components of resistance to Fusarium head blight of wheat. Plant Breeding, 114(5), 377-386. DOI: https://doi.org/10.1111/j.1439-0523.1995.tb00816.x

Mesterházy, Á., Bartók, T., Mirocha, C. G., & Komoroczy, R. (1999). Nature of wheat resistance to Fusarium head blight and the role of deoxynivalenol for breeding. Plant Breeding, 118(2), 97-110. DOI: https://doi.org/10.1046/j.1439-0523.1999.118002097. x

Ogbonnaya, F. C., Abdalla, O., Mujeeb-Kazi, A., Kazi, A. G., Xu, S. S., & Gosman, N. (2013). Synthetic hexaploids: harnessing species of the primary gene pool for wheat improvement. Plant Breeding, 37, 35-122. DOI: https://doi.org/10.1002/9781118497869.ch2

Ogbonnaya, F. C., Ye, G., Trethowan, R., Dreccer, F., Lush, D., Shepperd, J., & Van Ginkel, M. (2007). Yield of synthetic backcross-derived lines in rainfed environments of Australia. Euphytica, 157(3), 321-336. DOI: https://doi.org/10.1007/s10681-007-9381-y

Ortiz, R., Braun, H. J., Crossa, J., Crouch, J. H., Davenport, G., Dixon, J., ... Iwanaga, M. (2008). Wheat genetic resources enhancement by the International Maize and Wheat Improvement Center (CIMMYT). Genetic Resources and Crop Evolution, 55(7), 1095-1140. DOI: https://doi.org/10.1007/s10722-008-9372-4

Osman, M., He, X., Singh, R. P., Duveiller, E., Lillemo, M., Pereyra, S. A., ... Singh, P. K. (2015). Phenotypic and genotypic characterization of CIMMYT’s 15th international Fusarium head blight screening nursery of wheat. Euphytica, 205(2), 521-537. DOI: https://doi.org/10.1007/s10681-015-1425-0

Pimentel, A. J. B., Ribeiro, G., Souza, M. A., Moura, L. M., Assis, J. C., & Machado, J. C. (2013). Comparação de métodos de seleção de genitores e populações segregantes aplicados ao melhoramento de trigo. Bragantia, 72(2), 113-121. DOI: https://doi.org/10.1590/S0006-87052013005000026

Prasad, P. V. V., Pisipati, S. R., Mutava, R. N., & Tuinstra, M. R. (2008). Sensitivity of grain sorghum to high temperature stress during reproductive development. Crop Science, 48(5), 1911-1917. DOI: https://doi.org/10.2135/cropsci2008.01.0036

Sharma, P., Sareen, S., Saini, M., Verma, A., Tyagi, B. S., & Sharma, I. (2014). Assessing genetic variation for heat tolerance in synthetic wheat lines using phenotypic data and molecular markers. Australian Journal of Crop Science, 8(4), 515-522.

Stone, P. J., & Nicolas, M. E. (1994). Wheat cultivars vary widely in their responses of grain yield and quality to short periods of post-anthesis heat stress. Functional Plant Biology, 21(6), 887-900. DOI: https://doi.org/10.1071/PP9940887

Szabo-Hever, A., Zhang, Q., Friesen, T. L., Zhong, S., Elias, E. M., Cai, X., ... Xu, S. S. (2018). Genetic diversity and resistance to Fusarium head blight in synthetic hexaploid wheat derived from Aegilops tauschii and diverse Triticum turgidum subspecies. Frontiers in Plant Science, 9(1829), 1-14. DOI: https://doi.org/10.3389/fpls.2018.01829

Tekle, S., Lillemo, M., Skinnes, H., Reitan, L., Buraas, T., & Bjørnstad, Å. (2018). Screening of oat accessions for Fusarium Head Blight resistance using spawn‐inoculated field experiments. Crop Science, 58(1), 143-151. DOI: https://doi.org/10.2135/cropsci2017.04.0264

Van Ginkel, M., & Ogbonnaya, F. (2007). Novel genetic diversity from synthetic wheats in breeding cultivars for changing production conditions. Field Crops Research, 104(1-3), 86-94. DOI: https://doi.org/10.1016/j.fcr.2007.02.005

Yang, W., Liu, D., Li, J., Zhang, L., Wei, H., Hu, X., ... Zou, Y. (2009). Synthetic hexaploid wheat and its utilization for wheat genetic improvement in China. Journal of Genetics and Genomics, 36(9), 539-546. DOI: https://doi.org/10.1016/S1673-8527(08)60145-9

Zhang, H., Xu, C., He, Y., Zong, J., Yang, X., Si, H., ... Zhang, D. (2013). Mutation in CSA creates a new photoperiod-sensitive genic male sterile line applicable for hybrid rice seed production. Proceedings of the National Academy of Sciences of the United States of America, 110(1), 76-81. DOI: https://doi.org/10.1073/pnas.1213041110

Zhu, Z., Bonnett, D., Ellis, M., He, X., Heslot, N., Dreisigacker, S., ... Singh, P. (2016). Characterization of Fusarium head blight resistance in a CIMMYT synthetic-derived bread wheat line. Euphytica, 208(2), 367-375. DOI: https://doi.org/10.1007/s10681-015-1612-z

Publicado
2023-03-20
Como Citar
Frizon, P., Brammer, S. P., Deuner, C. C., Chechi, A., Lima, M. I. P. M., & Castro, R. L. de. (2023). Development of interspecific segregating populations of wheat and evaluation of agronomic characteristics and resistance to Fusarium head blight. Acta Scientiarum. Agronomy, 45(1), e58054. https://doi.org/10.4025/actasciagron.v45i1.58054
Seção
Melhoramento Vegetal

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus