Pre-germination treatments with plant growth regulators and bioactivators attenuate salt stress in melon: effects on germination and seedling development
Resumo
The scarcity of surface water has led to the use of underground sources as an alternative for crop irrigation by farmers in semi-arid regions. However, these water sources generally have high salinity, which prevents agricultural production. The objective of this study was to determine the effects of pre-germination treatments with plant growth regulators and bioactivators on melon seeds to attenuate salt stress caused by irrigation water during germination and seedling development. Two trials were carried out separately with the hybrids, Goldex and Grand Prix. The design was completely randomized in a 4 × 3 factorial scheme (four seed treatments and three dilutions of irrigation water). Seeds were treated with salicylic acid and gibberellic acid and the insecticide, thiamethoxam, in addition to the control. Local supply water, artesian well groundwater, and dilution of these waters at a 1:1 ratio were employed for irrigation. Fourteen days after sowing, morphological and physiological analyses were performed, and the material was collected for biochemical determination. The use of saline well water affected the initial development of melon seedlings of the Goldex and Grand Prix hybrids. Pre-germination treatment of Goldex hybrid seeds with gibberellic acid was inefficient at mitigating salt stress. However, the effects of irrigation water salinity on Grand Prix melon seeds pretreated with salicylic acid and thiamethoxam were attenuated.
Downloads
Referências
Almeida, A. D. S., Deuner, C., Borges, C. T., Meneghello, G. E., Jauer, A., & Villela, F. A. (2014). Treatment of rice seeds with thiamethoxam: reflections on physiological performance. Journal of Seed Science, 36(4), 392-398. DOI: https://doi.org/10.1590/2317-1545v36n4980
Almeida, A. S., Lauxen, L. S., Calazans, A. F. S., Harter, L. H., Ceolin, B. C., Rosa, G. F., ... Villela, F. A. (2020). Relação da leitura do clorofilômetro com os teores de clorofila de plântulas originadas de sementes tratadas com tiametoxam. Brazilian Journal of Development, 6(6), 40804-40812. DOI: https://doi.org/10.34117/bjdv6n6-572
Anaya, F., Fghire, R., Wahbi, S., & Loutfi, K. (2018). Influence of salicylic acid on seed germination of Vicia faba L. under salt stress. Journal of the Saudi Society of Agricultural Sciences, 17(1), 1-8. DOI: https://doi.org/10.1016/j.jssas.2015.10.002
Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207. DOI: https://doi.org/10.1007/bf00018060
Bezerra, R. U., Viana, T. V. A., Azevedo, B. M., Pereira Filho, J. V., & Lima, A. D. (2020). Produção e qualidade da abóbora maranhão sob influência de lâminas de irrigação e doses de nitrogênio. Irriga, 25(1), 87-101. DOI: https://doi.org/10.15809/irriga.2020v25n1p87-101
Cazarim, P. H., Fernandes, C. H. S., Bazzo, J. H. B., Ferreira, A. S., Castilho, Í. M., & Zucareli, C. (2021). Desempenho inicial de sementes de milheto tratadas com Tiametoxam e Azospirillum brasilense em condições de deficiência hídrica simulada. Acta Iguazu, 10(2), 90-99. DOI: https://doi.org/10.48075/actaiguaz.v10i2.27120
Chunthaburee, S., Sanitchon, J., Pattanagul, W., & Theerakulpisut, P. (2014). Alleviation of salt stress in seedlings of black glutinous rice by seed priming with spermidine and gibberellic acid. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 42(2), 405-413. DOI: https://doi.org/10.1583/nbha4229688
Dourado, D., Lima, S. F., Lima, A. P. F., Sorato, D. N., Bernardo, V. F., & Barbosa, H. M. (2020). Efeito de bioestimulante em sementes de cedro-rosa. Brazilian Journal of Development, 6(5), 30306-30319. DOI: https://doi.org/10.34117/bjdv6n5-474
Ferreira, D. F. (2011). Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia, 35(6), 1039-1042. DOI: https://doi.org/10.1590/S1413-70542011000600001
Gomes, C. A., Assis, A. C. L. P., Alves, D. P., & Reis, M. R. (2018). Aplicação de ácido salicílico como atenuador dos efeitos de déficit hídrico no milho. The Journal of Engineering and Exact Sciences, 4(3), 359-363. DOI: https://doi.org/10.18540/jcecvl4iss3pp0359-0363
Grohs, M., Marchesan, E., Roso, R., & Moraes, B. S. (2016). Attenuation of low-temperature stress in rice seedlings. Pesquisa Agropecuária Tropical, 46(2), 197-205. DOI: https://doi.org/10.1590/1983-40632016v4640436
Guirra, K. S., Torres, S. B., Leite, M. S., Guirra, B. S., Nogueira Neto, F. A., & Rêgo, A. L. (2020). Phytohormones on the germination and initial growth of pumpkin seedlings under different types of water. Revista Brasileira de Engenharia Agrícola e Ambiental, 24(12), 827-833. DOI: https://doi.org/10.1590/1807-1929/agriambi.v24n12p827-833
Habibi, G. (2012). Exogenous salicylic acid alleviates oxidative damage of barley plants under drought stress. Acta Biologica Szegediensis, 56(1), 57-63.
Iqbal, N., Umar, S., Khan, N. A., & Iqbal, M. (2014). A new perspective of phytohormones in salinity tolerance: regulation of proline metabolism. Enviromental and Experimental Botany, 100, 34-42. DOI: https://doi.org/10.1016/j.envexpbot.2013.12.006
Jini, D., & Joseph, B. (2017). Physiological mechanism of salicylic acid for alleviation of salt stress in rice. Rice Science, 24(2), 97-108. DOI: https://doi.org/10.1016/j.rsci.2016.07.007
Kandil, A. A., Sharief, A. E., Abido, W. A. E., & Awed, A. M. (2014). Effect of gibberellic acid on germination behaviour of sugar beet cultivars under salt stress conditions of Egypt. Sugar Tech, 16(2), 211-221. DOI: https://doi.org/10.1007/s12355-013-0252-7
Kaur, S., & Gupta, N. (2017). Effect of proline and salicylic acid on germination and antioxidant enzymes at different temperatures in muskmelon (Cucumis melo L.) seeds. Journal of Applied and Natural Science, 9(4), 2165-2169. DOI: https://doi.org/10.31018/jans.v9i4.1504
Khan, M. I. R., Fatma, M., Per, T. S., Anjum, N. A., & Khan, N. A. (2015). Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Frontiers in Plant Science, 6(462), 1-17. DOI: https://doi.org/10.3389/fpls.2015.00462
Kist, B. B., Carvalho, C., & Beling, R. R. (2021). Anuário brasileiro de hort&fruti 2021. In R. R. Beling (Ed.), Melão (p. 92-95). Santa Cruz do Sul, RS: Gazeta Santa Cruz.
Krzyzanowski, F. C., França-Neto, J. B., Gomes-Junior, F. G., & Nakagawa, J. (2020). Teste de vigor baseados em desempenho de plântulas. In F. C. Krzyzanowski, R. D. Vieira, J. B. França-Neto, & J. Marcos-Filho (Eds.), Vigor de sementes: conceitos e testes (p. 80-140). Londrina, PR: Abrates.
Lemes, E. S., Almeida, A. S., Meneghello, G. E., Tunes, L. M., & Villela, F. A. (2015). Germinação e vigor de sementes de abóbora tratadas com tiametoxam. Pesquisa Agropecuária Tropical, 45(1), 122-127. DOI: https://doi.org/10.1590/1983-40632015v4527581
Lima, L. A., Oliveira, F. D. A., Alves, R. C., Linhares, P. S. F., Medeiros, A. M. A., & Bezerra, F. M. S. (2015). Tolerância da berinjela à salinidade da água de irrigação. Revista Agro@mbiente On-line, 9(1), 27-34. DOI: https://doi.org/10.18227/1982-8470ragro.v9i1.2202
Lichtenthaler, H. K. (2004). El estrés y la medida del estrés en plantas. In M. J. Reigosa, N. Pedrol, & A. Sánchez (Eds.), La ecofisiología vegetal - una ciencia de síntesis (p. 59-111). Madrid, SP: Thomson.
Macedo, W. R., & Castro, P. R. D. C. (2011). Thiamethoxam: molecule moderator of growth, metabolism and production of spring wheat. Pesticide Biochemistry and Physiology, 100(3), 299-304. DOI: https://doi.org/10.1016/j.pestbp.2011.05.003
Muscolo, A., Panuccio, M. R., & Heshel, A. (2013). Ecophysiology of Pennisetum clandestinum: a valuable salt tolerant grass. Environmental and Experimental Botany, 92, 55-63. DOI: https://doi.org/10.1016/j.envexpbot.2012.07.009
Nelson, D. L., & Cox, M. M. (2019). Princípios de bioquímica de Lehninger. Porto Alegre, RS: Artmed.
Nóbrega, J. S., Silva, T. I., Ribeiro, J. E. S., Vieira, L. S., Figueiredo, F. R. A., Fátima, R. T., ... Dias, T. J. (2020). Salinidade e ácido salicílico no desenvolvimento inicial de melancia. Revista Desafios, 7(2), 162-171. DOI: https://doi.org/10.20873/ufv7-8169
Paixão, M. V. S., Mônico, A. F., Grobério, R. B. C., Cremonini, G. M., Faria Junior, H. P., & Cordeiro, A. J. C. (2021). Tratamentos pré-germinativos na emergência e desenvolvimento inicial de plântulas de graviola. Revistas Ensaios e Ciências, 25(1), 72-76. DOI: https://doi.org/10.17921/1415-6938.2021v25n1p72-76
Prabha, D., & Kumar, N. (2014). Seed treatment with salicylic acid enhance drought tolerance in Capsicum. World Journal of Agricultural Research, 2(2), 42-46. DOI: https://doi.org/10.12691/wjar-2-2-2
Richards, L. A. (1954). Diagnosis and improvement of saline and alkali soils. Washington, DC: United States Salinity Laboratory.
Silva, A. C. D., Suassuna, J. F., Melo, A. S. D., Costa, R. R., Andrade, W. L. D., & Silva, D. C. D. (2017). Salicylic acid as attenuator of drought stress on germination and initial development of sesame. Revista Brasileira de Engenharia Agrícola e Ambiental, 21(3), 156-162. DOI: https://doi.org/10.1590/1807-1929/agriambi.v21n3p156-162
Singh, P. K., & Gautam, S. (2013). Role of salicylic acid on physiological and biochemical mechanism of salinity stress tolerance in plants. Acta Physiologiae Plantarum, 35(8), 2345-2353. DOI: https://doi.org/10.1007/s11738-013-1279-9
Song, Q., Joshi, M., Dipiazza, J., & Joshi, V. (2020). Functional relevance of citrulline in the vegetative tissues of watermelon during abiotic stresses. Frontiers in Plant Science, 11(512), 1-13. DOI: https://doi.org/10.3389/fpls.2020.00512
Taiz, L., Zeiger, E., Møller, I. M., & Murphy, A. (2017). Fisiologia e desenvolvimento vegetal. Porto Alegre, RS: Artmed.
Torres, E. C. M., Freire, J. L. O., Oliveira, J. L., Bandeira, L. B., Melo, D. A., & Silva, A. L. (2014). Biometria de mudas de cajueiro anão irrigadas com águas salinas e uso de atenuadores do estresse salino. Nativa, 2(2), 71-78. DOI: https://doi.org/10.14583/2318-7670.v02n02a03
Tsegay, B. A., & Andargie, M. (2018). Seed priming with gibberellic acid (GA3) alleviates salinity induced inhibition of germination and seedling growth of Zea mays L., Pisum sativum var. abyssinicum A. Braun and Lathyrus sativus L. Journal of Crop Science and Biotechnology, 21(3), 261-267. DOI: https://doi.org/10.1007/s12892-018-0043-0
Yemm, E. W., & Cocking, E. C. (1955). The determination of amino-acids with ninhydrin. Analyst, 80(948), 209-213. DOI: https://doi.org/10.1039/an9558000209
Yemm, E. W., & Willis, A. J. (1954). The estimation of carbohydrates in plant extracts by anthrone. Biochemical Journal, 57(3), 508-514. DOI: https://doi.org/10.1042/bj0570508
Younesi, O., & Moradi, A. (2014). Effect of priming of seeds of Medicago sativa ‘bami’ with gibberellic acid on germination, seedlings growth and antioxidant enzymes activity under salinity stress. Journal of Horticultural Research, 22(2), 167-174. DOI: https://doi.org/10.2478/johr-2014-0034
DECLARAÇÃO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.