Carbon, nitrogen, and physical fractions of organic matter in recovered pastures of the Maranhense Amazon

Palavras-chave: Brachiaria brizantha; soil management; particle-size fractions.

Resumo

In Maranhão State, Brazil, soils are naturally acidic, nutrient-deficient, and prone to cohesion and erosion. Removing the natural cover to establish pastures causes physical, chemical, and biological changes in the soil. Therefore, this study aimed to evaluate the contents and stocks of carbon (C), nitrogen (N), and particle-size fractions of soil organic matter (SOM) in pastures with different years of recovery, and compare them with a secondary forest in the Legal Amazon. Four treatments were evaluated: secondary forest, perennial pasture, and perennial pastures recovered for five years and eight years, both of the latter through corn + brachiaria intercropping. The contents and stocks of total organic carbon, total nitrogen, C, and N from the soil organic matter particle-size fractions, as well as the carbon management indexes (CMI) of the 0.00–0.10, 0.10–0.20, 0.20–0.30, and 0.30–0.40 m layers were evaluated. The perennial pasture environment presented the highest total soil C and N contents; however, when observing the granulometric fractions and CMI, these increases were qualitative in relation to the secondary forest. Pasture recovery over eight years contributed to an improvement of soil quality similar to secondary forest, indicating that an increase in SOM quality, quantity, and recovery time related to increased pasture capacity to accumulate C and N in the soil.

Downloads

Não há dados estatísticos.

Referências

Alvares, C. A., Stape, J. J., Sentelhas, P. C., Moraes Gonçalves, J. L., & Sparovek, G. (2014). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711-728. DOI: https://doi.org/10.1127/0941-2948/2013/0507

Assunção, S. A., Pereira, M. G., Rosset, J. S., Berbara, R. L. L., & Garcia, A. C. (2019). Carbon input and the structural quality of soil organic matter as a function of agricultural management in a tropical climate region of Brazil. Science of The Total Environment, 658(3), 901-911. DOI: https://doi.org/10.1016/j.scitotenv.2018.12.271

Bastos, A. S., Sanquetta, C. R., Maniesi, V., Sanquetta, M. N. I., & Corte, A. P. D. (2021). Amazon plinthosols: carbon stocks and physical properties under different land uses. Ciência Florestal, 31(2), 749-765. DOI: https://doi.org/10.5902/1980509838211

Beltrán, M. J., Sainz-Rozas, H., Galantini, J. A., Romaniuk, R. I., & Barbieri, P. (2018). Cover crops in the Southeastern region of Buenos Aires, Argentina: effects on organic matter physical fractions and nutrient availability. Environmental Earth Sciences, 77(6), 1-11. DOI: https://doi.org/10.1007/s12665-018-7606-0

Bieluczyk, W., Piccolo, M. C., Pereira, M. G., Moraes, M. T., Soltangheisi, A., Bernardi, A. C. C., ... Cherubin, M. R. (2020). Integrated farming systems influence soil organic matter dynamics in southeastern Brazil. Geoderma, 371(6), 1-8. DOI: https://doi.org/10.1016/j.geoderma.2020.114368

Blair, G. J., Lefroy, R. D. B., & Lisle, L. (1995). Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Australian Journal of Agricultural Research, 46(7), 1459-1466. DOI: https://doi.org/10.1071/AR9951459

Bremner, J. M., & Mulvaney, C. S. (1982). Nitrogen total. In A. L. Page (Ed.), Methods of soil analysis (p. 595-624). Part 2. Madison, US: American Society of Agronomy.

Bungenstab, D. J., Almeida, R. G., Laura, V. A., Balbino, L. C., & Ferreira, A. D. (2019). ILPF: inovação com integração de lavoura, pecuária e floresta. Brasília, DF: Embrapa.

Cambardella, C. A., & Elliott, E. T. (1992). Particulate soil organic matter changes across a grassland cultivation sequence. Soil Science Society of America Journal, 56(3), 777-783. DOI: https://doi.org/10.2136/sssaj1992.03615995005600030017x

Campos, M. C. C., Soares, M. D. R., Nascimento, M. F., & Silva, D. M. P. (2016). Carbon storage in soil and aggregates of Inceptisols under different land use management systems in southern Amazonas. Revista Ambiente & Água, 11(2), 339-349. DOI: https://doi.org/10.4136/ambi-agua.1819

Cantarella, H. (2007). Nitrogênio. In R. F. Novais, V. H. Alvarez Venegas, N. F. Barros, R. L. F. Fontes, R. B. Cantarutti, & J. C. L. Neves (Eds.), Fertilidade do solo (p. 375-470). Viçosa, MG: SBCS.

Celentano, D., Rousseau, G. X., Paixão, L. S., Lourenço, F., Cardozo, E. G., Rodrigues, T. O., ... Reis, F. O. (2020). Carbon sequestration and nutrient cycling in agroforestry systems on degraded soils of Eastern Amazon, Brazil. Agroforestry Systems, 94(5), 1781-1792. DOI: https://doi.org/10.1007/s10457-020-00496-4

Conceição, P. C., Bayer, C., Dieckow, J., & Santos, D. C. (2014). Physical fractionation of organic matter and carbon management index of an Alfisol subjected to conservation management systems. Ciência Rural, 44(5), 794-800. DOI: https://doi.org/10.1590/S0103-84782014005000004

Instituto Nacional de Pesquisas Espaciais [INPE]. (2019). Monitoramento da cobertura florestal da Amazônia por satélites - sistemas Prodes, Deter, Degrad e Queimadas. São José do Campos, SP: INPE. Retrieved on Mar. 20, 2021 from http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/prodes

IUSS Working Group WRB. (2015). World Reference Base for Soil Resources 2014, update 2015. International soil classification systems for naming soils and creating legends for soil maps (Update 2015). Rome, IT: FAO. (World Soil Resources Reports, 106).

Lavalle, J. M., Soong, J. L., & Cotrufo, M. F. (2020). Conceptualizing soil organic matter into particulate and mineral‐associated forms to address global change in the 21st century. Global Change Biology, 26(10), 261-273. DOI: https://doi.org/10.1111/gcb.14859

Maranhão. (2013). Atlas do Maranhão. Secretaria de Estado do Planejamento e Orçamento, Núcleo Geoambiental UEMA. São Luís, MA: SEPLAN.

Martins, L. F. B. N., Troian, D., Rosset, J. S., Souza, C. B. S., Farias, P. G. S., Ozório, J. M. B., ... Castilho, S. C. P. (2020). Soil carbon stock in different uses in the southern cone of Mato Grosso do Sul. Revista de Agricultura Neotropical, 7(4), 86-94. DOI: https://doi.org/10.32404/rean.v7i4.5351

Mendonça, E. S., & Matos, E. S. (2017). Matéria orgânica do solo: métodos de análises (2. ed.). Viçosa, MG: Gefert.

Oliveira, S. P., Cândido, M. J. D., Weber, O. B., Xavier, F. A. S., Escobar, M. E. O., & Oliveira, T. S. (2016). Conversion of forest into irrigated pasture I. Changes in the chemical and biological properties of the soil. Catena, 137(2), 508-516. DOI: https://doi.org/10.1016/j.catena.2015.10.017

Oliveira, T. P., Ensinas, S. C., Barbosa, G. F., Nanzer, M. C., Barreta, P. G. V., Silva, M. F. G., ... Prado, E. A. F. (2018). Carbono lábil e frações oxidáveis de carbono em solos cultivados sob diferentes formas de uso e manejo. Revista Brasileira de Agropecuária Sustentável, 8(3), 49-56. DOI: https://doi.org/10.21206/rbas.v8i4.3068

Ozório, J. M. B., Rosset, J. S., Schiavo, J. A., Souza, C. B. S., Farias, P. G. S., Oliveira, N. S., ... Panachuki, E. (2020). Physical fractions of organic matter and mineralizable soil carbon in forest fragments of the Atlantic Forest. Revista Ambiente & Água, 15(6), 2601. DOI: https://doi.org/10.4136/ambi-agua.2601

Pegoraro, R. F, Moreira, C. G, Dias, D. G., & Silveira, T. C. (2018). Carbon and nitrogen stocks in the soil and humic substances of agricultural crops in the semi-arid region. Revista Ciência Agronômica, 49(4), 574-583. DOI: https://doi.org/10.5935/1806-6690.20180065

Pereira, M. A., Costa, F. P., Montagner, D. B., Euclides, V. P. B., Araújo, A. R., Barbosa, R. A., & Souza, J. A. B. A. (2020). Pastagens: condicionantes econômicos e seus efeitos nas decisões de formação e manejo. Campo Grande, MS: Embrapa Gado de Corte. (Comunicado técnico, 150).

R Core Team. (2021). R: A language and environment for statistical computing. Vienna, AT: R Foundation for Statistical Computing.

Reis, V. R. R., Deon, D. S., Muniz, L. C., Garcia, U. S., Cantanhêde, I. S. L., Rego, C. A. R. M., ... Marques, E. O. (2018). Soil chemical attributes under crop-livestock-forest integration system and in different land uses in mata dos cocais region. Journal of Agricultural Science, 10(4), 370-380. DOI: https://doi.org/10.5539/jas.v10n4p370

Rios, L. (2001). Estudos de geografia do Maranhão. São Luís, MG: Gráphis Editora.

Rosset, J. S., Lana, M. C., Pereira, M. G., Schiavo, J. A., Rampim, L., & Sarto, M. V. M. (2019). Organic matter and soil aggregation in agricultural systems with different adoption times. Semina: Ciências Agrárias, 40(6), 3443-3460. DOI: https://doi.org/10.5433/1679-0359.2019v40n6supl3p3443

Sampaio, A. C. F., Silva, E. S., Vale Júnior, J. F., Silva, E. E., Santos, B. R., & Oliveira, R. F. (2020). Granulometry and carbon and nitrogen contents at different depths of a soil under integrated production systems. Agropecuária Científica no Semiárido, 16(2), 58-63. DOI: https://doi.org/10.30969/acsa.v16i2.1083

Santos, C. C., Ferraz Junior, A. S. L., Sá, S. O., Muñoz Gutiérrez, J. A., Braun, H., Sarrazin, M., ... Desjardins, T. (2018a). Soil carbon stock and Plinthosol fertility in smallholder land-use systems in the eastern Amazon, Brazil, Carbon Management, 9(6), 655-664. DOI: https://doi.org/10.1080/17583004.2018.1530026

Santos, H. G., Jacomine, P. K. T., Anjos, L. H. C., Oliveira, V. A., Lumbreras, J. F., Coelho, M. R., ... Cunha, T. J. F. 2018b. Sistema brasileiro de classificação de solos (5. ed.). Brasília, DF: Embrapa.

Sarto, M. V. M., Borges, W. L. B., Bassegio, D., Pires, C. A. B., Rice, C. W., & Rosolem, C. A. (2020). Soil microbial community, enzyme activity, C and N stocks and soil aggregation as affected by land use and soil depth in a tropical climate region of Brazil. Archives of Microbiology, 202(6), 2809-2824. DOI: https://doi.org/10.1007/s00203-020-01996-8

Silva, E., Lourente, E. P. R., Marchetti, M. E., Mercante, F. M., Ferreira, A. K. T., & Fujii, G. C. (2011). Labile and recalcitrant fractions of soil organic matter under integrated crop-livestock system. Pesquisa Agropecuária Brasileira, 46(10), 1321-1331. DOI: https://doi.org/10.1590/S0100-204X2011001000028

Silva, I. R., & Mendonça, E. S. (2007). Matéria orgânica do solo. In R. F. Novais, V. H. Alvarez Venegas, N. F. Barros, R. L. F. Fontes, R. B. Cantarutti, & J. C. L. Neves (Eds.), Fertilidade do solo (p. 275-374). Viçosa, MG: SBCS.

Silva, J. R. M., Ensinas, S. C., Barbosa, G. F., Rezende, J. V. O., Barreta, P. G. V., & Zuffo, A. M. (2020). Total organic carbon and the humic fractions of the soil organic matter in silvopastoral system. Revista Brasileira de Ciências Agrárias, 15(2), 1-6. DOI: https://doi.org/10.5039/agraria.v15i2a6874

Tedesco, J. M., Wolkweiss, S. J., & Bohnen, H. (1985). Análise de solo, planta e outros materiais. Porto Alegre, RS: UFRGS. (Boletim Técnico, 5).

Teixeira, P. C., Donagemma, G. K., Fontana, A., Teixeira, W. G. (2017). Manual de métodos de análises de solo (3. ed.). Brasília, DF: Embrapa.

Yeomans, J. C., & Bremner, J. M. (1988). A rapid and precise method for routine determination of carbon in soil. Communications in Soil Science and Plant Analysis, 19(13), 1467-1476. DOI: 10.1080/00103628809368027

Publicado
2023-08-22
Como Citar
Rego, C. A. R. de M., Oliveira, P. S. R. de, Rosset, J. S., Muniz, L. C., Mattei, E., Reis, V. R. R., Costa, B. P., & Nunes Neto, W. R. (2023). Carbon, nitrogen, and physical fractions of organic matter in recovered pastures of the Maranhense Amazon . Acta Scientiarum. Agronomy, 45(1), e60794. https://doi.org/10.4025/actasciagron.v45i1.60794

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus