Multi-trait multi-environment models for selecting high-performance and stable eucalyptus clones
Resumo
Multi-trait multi-environment (MTME) models were fitted to eucalyptus breeding trials data to assess residual variance structure, genetic stability and adaptability. To do so, 215 eucalyptus clones were evaluated in a randomized complete block design with 30 replicates and one plant per plot in four environments. At 36 months of age, tree diameter at breast height (DBH) and pilodyn penetration (PP) were measured. Two MTME models were fitted, for which residuals were considered homoscedastic and heteroscedastic, with the best MTME model selected using Bayesian information criterion. The harmonic mean of the relative performance of the genotypic values (HMRPGV) was used to determine stability and adaptability. Of the two models, the heteroscedastic MTME model had better fit and provided greater accuracy. In addition, genotype-by-environment interaction was complex, and there was low genetic correlation between DBH and PP. Rank correlation between the clones selected by the MTME models was high for DBH but low for PP. The HMRPGV facilitated clone selection through simultaneous evaluation of stability, adaptability, and productivity. Thus, our results suggest that heteroscedastic MTME model / HMRPGV can be efficiently applied in the genetic evaluation and selection of eucalyptus clones.
Downloads
Referências
Alves, R. S., Rocha, J. R. A. S. C., Teodoro, P. E., Resende, M. D. V., Henriques, E. P., Silva, L. A., ... Bhering, L. L. (2018). Multiple-trait BLUP: A suitable strategy for genetic selection of Eucalyptus. Tree Genetics & Genomes, 14(5), 77. DOI: https://doi.org/10.1007/s11295-018-1292-7
Alves, R. S., Resende, M. D. V., Azevedo, C. F., Silva, F. F., Rocha, J. R. A. S. C., Nunes, A. C. P., ... Santos, G. A. (2020). Optimization of Eucalyptus breeding through random regression models allowing for reaction norms in response to environmental gradients. Tree Genetics & Genomes, 16(2), 38. DOI: https://doi.org/10.1007/s11295-020-01431-5
Atlin, G. N., Cairns, J. E., & Das, B. (2017). Rapid breeding and varietal replacement are critical to adaptation of cropping systems in the developing world to climate change. Global Food Security, 12, 31-37. DOI: https://doi.org/10.1016/j.gfs.2017.01.008
Bernardo, R. (2020). Reinventing quantitative genetics for plant breeding: Something old, something new, something borrowed, something BLUE. Heredity, 125(6), 375-385. DOI: https://doi.org/10.1038/s41437-020-0312-1
Binkley, D., Campoe, O. C., Alvares, C., Carneiro, R. L., Cegatta, Í., & Stape, J. L. (2017). The interactions of climate, spacing and genetics on clonal Eucalyptus plantations across Brazil and Uruguay. Forest Ecology and Management, 405, 271-283. DOI: https://doi.org/10.1016/j.foreco.2017.09.050
Bocianowski, J., & Liersch, A. (2021). Multi-environmental evaluation of winter oilseed rape genotypic performance using mixed models. Euphytica, 217(5), 80. DOI: https://doi.org/10.1007/s10681-020-02760-1
Burdick, R. K., & Graybill, F. A. (1992). Confidence intervals on variance components (1st ed.). New York, NY: CRC Press.
Butler, D. G., Cullis, B. R., Gilmour, A. R., Gogel, B. J., & Thompson, R. (2018). ASReml-R reference manual Version 4. VSN International. Retrieved on Aug. 10, 2021 from https://mmade.org/wp-content/uploads/2019/01/asremlRMfinal.pdf
Castro, C. A. O., Resende, R. T., Bhering, L. L., & Cruz, C. D. (2016). Brief history of Eucalyptus breeding in Brazil under perspective of biometric advances. Ciência Rural, 46(9), 1585-1593. DOI: https://doi.org/10.1590/0103-8478cr20150645
Ceccarelli, S. (2015). Efficiency of Plant Breeding. Crop Science, 55(1), 87-97. DOI: https://doi.org/10.2135/cropsci2014.02.0158
Chaves, S. F. S., Alves, R. M., Alves, R. S., Sebbenn, A. M., Resende, M. D. V., & Dias, L. A. S. (2021). Theobroma grandiflorum breeding optimization based on repeatability, stability and adaptability information. Euphytica, 217(211), 1-24. DOI: https://doi.org/10.1007/s10681-021-02944-3
Coelho, I. F., Peixoto, M. A., Evangelista, J. S. P. C., Alves, R. S., Sales, S., Resende, M. D. V., Bhering, L. L. (2020). Multiple-trait, random regression, and compound symmetry models for analyzing multi-environment trials in maize breeding. PLoS ONE, 15(11), 1-13. DOI: https://doi.org/10.1371/journal.pone.0242705
Dias, P. C., Xavier, A., Resende, M. D. V., Barbosa, M H. P., Bierkaski, F. A., & Estopa, R. A. (2018). Genetic evaluation of Pinus taeda clones from somatic embryogenesis and their genotype x environment interaction. Crop Breeding and Applied Biotechnology, 18(1), 55-64. DOI: https://doi.org/10.1590/198470332018v18n1a8
Eberhart, S. T., & Russell, W. A. (1966). Stability parameters for comparing varieties 1. Crop science, 6(1), 36-40.
Elli, E. F., Sentelhas, P. C., & Bender, F. D. (2020). Impacts and uncertainties of climate change projections on Eucalyptus plantations productivity across Brazil. Forest Ecology and Management, 474, 1-7. DOI: https://doi.org/10.1016/j.foreco.2020.118365
Elli, E. F., Sentelhas, P. C., Freitas, C. H., Carneiro, R. L., & Alvares, C. A. (2019). Assessing the growth gaps of Eucalyptus plantations in Brazil – Magnitudes, causes and possible mitigation strategies. Forest Ecology and Management, 451, 1-7. DOI: https://doi.org/10.1016/j.foreco.2019.117464
Ewing, P. M., Runck, B. C., Kono, T. Y. J., & Kantar, M. B. (2019). The home field advantage of modern plant breeding. PLoS ONE, 14(12), 1-12. DOI: https://doi.org/10.1371/journal.pone.0227079
Falconer, D. S., & MacKay, T. F. C. (1996). Introduction to quantatitive genetics (4th ed.). Harlow, UK: Pearson Prentice Hall; Longmans Green.
Ferreira, F. M., Rocha, J. R. A. S. C, Bhering, L. L., Fernandes, F. D., Lédo, F. J. S., Rangel, J. H. A, ... Machado, J. C. (2021). Optimal harvest number and genotypic evaluation of total dry biomass, stability and adaptability of elephant grass clones for bioenergy purposes. Biomass and Bioenergy, 149, 1-6. DOI: https://doi.org/10.1016/j.biombioe.2021.106104 .
Finlay, K., & Wilkinson, G. (1963). The analysis of adaptation in a plant-breeding programme. Australian Journal of Agricultural Research, 14(6), 742-754.
Hardner, C. (2017). Exploring opportunities for reducing complexity of genotype-by-environment interaction models. Euphytica, 213(11), 248. DOI: https://doi.org/10.1007/s10681-017-2023-0
Hasnikova, H., & Kuklík, P. (2013). Investigation of timber members at the Marasyk Station in Prague by non-destructive methods. Advanced Materials Research, 778, 243-249. DOI: https://doi.org/10.4028/www.scientific.net/AMR.778.243
Henderson, C. R. (1975). Best linear unbiased estimation and prediction under a selection model. Biometrics, 31(2), 423. DOI: https://doi.org/10.2307/2529430
Henderson, C. R., & Quaas, R. L. (1976). Multiple Trait Evaluation Using Relatives’ Records. Journal of Animal Science, 43(6), 1188-1197. DOI: https://doi.org/10.2527/jas1976.4361188x
Instituto Brasileiro de Geografia e Estatística [IBGE]. (2019). Produção da extração vegetal e da Silvicultura. SIDRA. Retrieved on Aug. 10, 2021, from https://sidra.ibge.gov.br/tabela/5930#resultado
Imai, A., Kuniga, T., Yoshioka, T., Nonaka, K., Mitani, N., Fukamachi, H., ... Hayashi, T. (2016). Evaluation of the best linear unbiased prediction method for breeding values of fruit-quality traits in citrus. Tree Genetics & Genomes, 12(6), 119. DOI: https://doi.org/10.1007/s11295-016-1078-8
Isik, F., Holland, J., & Maltecca, C. (2017). Multi Environmental Trials. In F. Isik, J. Holland, & C. Maltecca (Eds.), Genetic data analysis for plant and animal breeding (p. 227-262). New York, NY: Springer International Publishing. DOI: https://doi.org/10.1007/978-3-319-55177-7_8
Leon, N., Jannink, J.-L., Edwards, J. W., & Kaeppler, S. M. (2016). Introduction to a special issue on genotype by environment Interaction. Crop Science, 56(5), 2081-2089. DOI: https://doi.org/10.2135/cropsci2016.07.0002in
Li, Y., Suontama, M., Burdon, R. D., & Dungey, H. S. (2017). Genotype by environment interactions in forest tree breeding: Review of methodology and perspectives on research and application. Tree Genetics & Genomes, 13(3), 1-18. DOI: https://doi.org/10.1007/s11295-017-1144-x
Mathew, B., Léon, J., & Sillanpää, M. J. (2018). Impact of residual covariance structures on genomic prediction ability in multi-environment trials. PLoS ONE, 13(7), 1-11. DOI: https://doi.org/10.1371/journal.pone.0201181
Melo, V. L., Marçal, T. S., Rocha, J. R. A. S. C., Anjos, R. S. R., Carneiro, P. C. S., & Carneiro, J. E. S. (2020). Modeling (co)variance structures for genetic and non-genetic effects in the selection of common bean progenies. Euphytica, 216(5), 1-13. DOI: https://doi.org/10.1007/s10681-020-02607-9
Montesinos-López, O. A., Montesinos-López, A., Crossa, J., Toledo, F. H., Pérez-Hernández, O., Eskridge, K. M., & Rutkoski, J. (2016). A Genomic Bayesian Multi-trait and Multi-environment Model. G3 Genes|Genomes|Genetics, 6(9), 2725-2744. DOI: https://doi.org/10.1534/g3.116.032359
Montesinos-López, O. A., Montesinos-López, A., Hernández, M. V., Ortiz-Monasterio, I., Pérez-Rodríguez, P., Burgueño, J., & Crossa, J. (2019). Multivariate Bayesian analysis of on-farm trials with multiple-trait and multiple-environment data. Agronomy Journal, 111(6), 2658-2669. DOI: https://doi.org/10.2134/agronj2018.06.0362
Patterson, H. D., & Thompson, R. (1971). Recovery of inter-block information when block sizes are unequal. Biometrika, 58(3), 545-554. DOI: https://doi.org/10.1093/biomet/58.3.545
Peixoto, M. A., Coelho, I. F., Evangelista, J. S. P. C., Alves, R. S., Rocha, J. R. A. S. C., Farias, F. J. C., ... Bhering, L. L. (2020). Reaction norms-based approach applied to optimizing recommendations of cotton genotypes. Agronomy Journal, 112(6), 4613-4623. DOI: https://doi.org/10.1002/agj2.20433
Peixoto, M. A., Evangelista, J. S. P. C., Alves, R. S., Farias, F. J. C., Carvalho, L. P., Teodoro, L. P. R., ... Bhering, L. L. (2021). Models for optimizing selection based on adaptability and stability of cotton genotypes. Ciência Rural, 51(5), 1-8. DOI: https://doi.org/10.1590/0103-8478cr20200530
Ramalho, M. A. P., Marques, T. L., & Lemos, R. C. (2021). Plant breeding in Brazil: Retrospective of the past 50 years. Crop Breeding and Applied Biotechnology, 21(Spe.), 1-11. DOI: https://doi.org/10.1590/1984-70332021v21Sa16
Resende, M. D. V. (2004). Métodos estatísticos ótimos para análise de experimentos de campo. Retrieved on Feb. 10, 2021, from https://www.infoteca.cnptia.embrapa.br/handle/doc/305549
Resende, M. D. V. (2016). Software Selegen-REML/BLUP: A useful tool for plant breeding. Crop Breeding and Applied Biotechnology, 16(4), 330-339. DOI: https://doi.org/10.1590/1984-70332016v16n4a49
Resende, M. D. V., & Alves, R. S. (2020). Linear, generalized, hierarchical, bayesian and random regression mixed models in genetic/genomics in plant breeding. Functional Plant Breeding Journal, 2(2), 1-31. DOI: https://doi.org/10.35418/2526-4117/v2n2a1
Resende, M. D. V., Silva, F. F., & Azevedo, C. F. (2014). Estatística matemática, biométrica e computacional: Modelos mistos, multivariados, categóricos e generalizados (REML/BLUP), inferência bayesiana, regressão, aleatória, seleção genômica, QTL, GWAS, estatística espacial e temporal, competição, sobrevivência. Viçosa, MG: UFV.
Schwarz, G. (1978). Estimating the Dimension of a Model. The Annals of Statistics, 6(2), 461-464.
Shalizi, M. N., & Isik, F. (2019). Genetic parameter estimates and GxE interaction in a large cloned population of Pinus taeda L. Tree Genetics & Genomes, 15(3), 46. DOI: https://doi.org/10.1007/s11295-019-1352-7
Silva, C. P., Oliveira, L. A., Nuvunga, J. J., Pamplona, A. K. A., & Balestre, M. (2019). Heterogeneity of Variances in the Bayesian AMMI model for multienvironment trial studies. Crop Science, 59(6), 2455-2472. DOI: https://doi.org/10.2135/cropsci2018.10.0641
Smith, A. B., & Cullis, B. R. (2018). Plant breeding selection tools built on factor analytic mixed models for multi-environment trial data. Euphytica, 214(8), 1-19. DOI: https://doi.org/10.1007/s10681-018-2220-5
Sun, J., Rutkoski, J. E., Poland, J. A., Crossa, J., Jannink, J.-L., & Sorrells, M. E. (2017). Multitrait, random regression, or simple repeatability model in high-throughput phenotyping data improve genomic prediction for wheat grain yield. The Plant Genome, 10(2), 1-12. DOI: https://doi.org/10.3835/plantgenome2016.11.0111
van Eeuwijk, F. A., Bustos-Korts, D. V., & Malosetti, M. (2016). What should students in plant breeding know about the statistical aspects of genotype × environment interactions? Crop Science, 56(5), 2119-2140. DOI: https://doi.org/10.2135/cropsci2015.06.0375
Volpato, L., Alves, R. S., Teodoro, P. E., Resende, M. D. V., Nascimento, M., Nascimento, A. C. C., ... Borém, A. (2019). Multi-trait multi-environment models in the genetic selection of segregating soybean progeny. PLoS ONE, 14(4), 1-22. DOI: https://doi.org/10.1371/journal.pone.0215315
Yan, W., Hunt, L. A., Sheng, Q., & Szlavnics, Z. (2000). Cultivar Evaluation and Mega-Environment Investigation Based on the GGE Biplot. Crop Science, 40(3), 597-605. DOI: https://doi.org/10.2135/cropsci2000.403597x
Zobel, R. W., Wright, M. J., & Gauch Jr., H. G. (1988). Statistical analysis of a yield trial. Agronomy Journal, 80(3), 388-393. DOI: https://doi.org/10.2134/agronj1988.00021962008000030002x
DECLARAÇÃO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.