Genomic prediction using the lmekin function from the coxme R package

Palavras-chave: mixed models; GBLUP; genomic relationship matrix; pedigree; genetic breeding.

Resumo

The increasing use of genomic selection (GS) in plant and animal breeding programs has led to the development of software that fits models based on unique scenarios. Accordingly, several R packages have been developed for GS. The lmekin function from the coxme R package was one of the first functions implemented in R to fit models with random family effects using the pedigree–based relationship matrix. The function allows the user to provide the covariance structures for the random effects; thus, the GBLUP model can be fitted. This fitting process consists of replacing, in the traditional BLUP model, the additive relationship matrix derived from a pedigree by the additive relationship matrix derived from markers. Thus, the objective of this study was to employ the lmekin function in the context of genomic prediction by comparing the results of this function with those obtained using five R packages for GS: rrBLUP, BGLR, sommer, lme4qtl, and lme4GS. The comparisons were performed considering the computational times and predicted values for a wheat dataset and simulated big data. In addition, we implemented a 5-fold cross-validation scheme through considering the values predicted by the lmekin function for the wheat dataset. The results indicated that the lmekin function was effective in predicting genomic breeding values considering multiple random effects and relatively small sample sizes. The rrBLUP package processed the fastest for the scenario with only one genetic random effect, and the high temporal efficiency of the sommer package was confirmed for the scenario with more than one genetic random effect. Differences in computational times occurred because of the different algorithms implemented in the packages to estimate the variance components.

Downloads

Não há dados estatísticos.

Referências

Azevedo, C. F., Nascimento, M., Fontes, V. C., Silva, F. F., Resende, M. D. V. D., & Cruz, C. D. (2019). GenomicLand: Software for genome-wide association studies and genomic prediction. Acta Scientiarum. Agronomy, 41(1), 1-7. DOI: http://doi.org/10.4025/actasciagron.v41i1.45361

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1-48. DOI: http://doi.org/10.18637/jss.v067.i01

Budhlakoti, N., Kushwaha, A. K., Rai, A., Chaturvedi, K. K., Kumar, A., Pradhan, A. K., ... Kumar, D. (2022). Genomic Selection: A Tool for Accelerating the Efficiency of Molecular Breeding for Development of Climate Resilient Crops. Frontiers in Genetics, 13, 1-17. DOI: http://doi.org/10.3389/fgene.2022.832153

Caamal-Pat, D., Pérez-Rodríguez, P., Crossa, J., Velasco-Cruz, C., Pérez-Elizalde, S., & Vázquez-Peña, M. (2021). lme4GS: An R-Package for Genomic Selection. Frontiers in Genetics, 12, 1-12. DOI: http://doi.org/10.3389/fgene.2021.680569

Covarrubias-Pazaran, G. (2016). Genome-assisted prediction of quantitative traits using the R package sommer. PLoS ONE, 11(6), 1-15. DOI: http://doi.org/10.1371/journal.pone.0156744

Covarrubias-Pazaran, G. (2018). Software update: Moving the R package sommer to multivariate mixed models for genome-assisted prediction. bioRxiv, 1-14. DOI: http://doi.org/10.1101/354639

Crossa, J., Campos, G. D. L., Pérez, P., Gianola, D., Burgueno, J., Araus, J. L., ... Braun, H. J. (2010). Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers. Genetics, 186(2), 713-724. DOI: http://doi.org/10.1534/genetics.110.118521

Cruz, C. D. (2016). Genes software-extended and integrated with the R, Matlab and Selegen. Acta Scientiarum. Agronomy, 38(4), 547-552. DOI: http://doi.org/10.4025/actasciagron.v38i4.32629

de los Campos, G., Hickey, J. M., Pong-Wong, R., Daetwyler, H. D., & Calus, M. P. (2013). Whole-genome regression and prediction methods applied to plant and animal breeding. Genetics, 193(2), 327-345. DOI: http://doi.org/10.1534/genetics.112.143313

de los Campos, G., Naya, H., Gianola, D., Crossa, J., Legarra, A., Manfredi, E., ... Cotes, J. M. (2009). Predicting quantitative traits with regression models for dense molecular markers and pedigree. Genetics, 182(1), 375-385. DOI: http://doi.org/10.1534/genetics.109.101501

Endelman, J. B. (2011). Ridge regression and other kernels for genomic selection with R package rrBLUP. The Plant Genome, 4(3), 250-255. DOI: http://doi.org/10.3835/plantgenome2011.08.0024

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning: With Applications in R. New York, NY: Springer.

Meuwissen, T. H., Hayes, B. J., & Goddard, M. (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics, 157(4), 1819-1829. DOI: http://doi.org/10.1093/genetics/157.4.1819

Mrode, R. A. (2014). Linear models for the prediction of animal breeding values (3rd ed.). Boston, MA: CABI.

Muñoz, P. R., Resende Jr, M. F., Gezan, S. A., Resende, M. D. V., de los Campos, G., Kirst, M., ... Peter, G. F. (2014). Unraveling additive from nonadditive effects using genomic relationship matrices. Genetics, 198(4), 1759-1768. DOI: http://doi.org/10.1534/genetics.114.171322

Pérez, P., & de los Campos, G. (2014). Genome-wide regression and prediction with the BGLR statistical package. Genetics, 198(2), 483-495. DOI: http://doi.org/10.1534/genetics.114.164442

Pinheiro, J. C., & Bates, D. M. (2000). Mixed-effects models in S and S-Plus. New York, NY: Springer.

Resende, M. D. V. (2016). Software Selegen-REML/BLUP: a useful tool for plant breeding. Crop Breeding and Applied Biotechnology, 16(4), 330-339. DOI: http://doi.org/10.1590/1984-70332016v16n4a49

Resende, M. D. V., Silva, F. F., & Azevedo, C. F. (2014). Estatística matemática, biométrica e computacional: Modelos mistos, multivariados, categóricos e generalizados (REML/BLUP), inferência bayesiana, regressão aleatória, seleção genômica, QTL-GWAS, estatística espacial e temporal, competição, sobrevivência. Viçosa, MG: UFV.

R Core Team. (2022). R: A language and environment for statistical computing. Vienna, AT: R Foundation for Statistical Computing. Retrieved on May 22, 2022 from https://www.R-project.org

Santos, V. S., Martins Filho, S., Resende, M. D. V., Azevedo, C. F., Lopes, P. S., Guimarães, S. E. F., & Silva, F. F. (2016). Genomic prediction for additive and dominance effects of censored traits in pigs. Genetics and Molecular Research, 15(4), 1-16. DOI: http://doi.org/10.4238/gmr15048764

Therneau T. M. (2020). Mixed effects cox models. R package version 2.2-16. Retrieved on May 22, 2022 from https://CRAN.R-project.org/package=coxme

VanRaden, P. M. (2008). Efficient methods to compute genomic predictions. Journal of Dairy Science, 91(11), 4414-4423. DOI: http://doi.org/10.3168/jds.2007-0980

Vazquez, A. I., Bates, D. M., Rosa, G. J. M., Gianola, D., & Weigel, K. A. (2010). An R package for fitting generalized linear mixed models in animal breeding. Journal of Animal Science, 88(2), 497-504. DOI: http://doi.org/10.2527/jas.2009-1952

Yang, J., Benyamin, B., McEvoy, B. P., Gordon, S., Henders, A. K., Nyholt, D. R., ... Visscher, P. M. (2010). Common SNPs explain a large proportion of the heritability for human height. Nature Genetics, 42(7), 565-569. DOI: http://doi.org/10.1038/ng.608

Zhao, J. H., & Luan, J. A. (2012). Mixed modeling with whole genome data. Journal of Probability and Statistics, 2012(1), 1-16. DOI: http://doi.org/10.1155/2012/485174

Ziyatdinov, A., Vázquez-Santiago, M., Brunel, H., Martinez-Perez, A., Aschard, H., & Soria, J. M. (2018). lme4qtl: linear mixed models with flexible covariance structure for genetic studies of related individuals. BMC Bioinformatics, 19(1), 1-5. DOI: http://doi.org/10.1186/s12859-018-2057-x

Publicado
2023-12-12
Como Citar
Souza, C. S. de, Santos, V. S. dos, & Martins Filho, S. (2023). Genomic prediction using the lmekin function from the coxme R package. Acta Scientiarum. Agronomy, 46(1), e64243. https://doi.org/10.4025/actasciagron.v46i1.64243
Seção
Biometria, Modelagem e Estatística

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus