Selection of popcorn genotypes resistant to Spodoptera frugiperda and identification of resistance-related key traits

Palavras-chave: fall armyworm; genetic resistance; Zea mays.

Resumo

The Spodoptera frugiperda, is one of the most deleterious pests of popcorn and the identification of resistant genotypes is determinant in breeding programs. The objective of this study was to select popcorn genotypes resistant to S. frugiperda and the key traits related to the identification of resistance. The popcorn varieties UEM J1, Composto Márcia, Arachida, Composto Gaúcho, and Zapalote Chico (resistant check) were evaluated in a completely randomized design with 100 replications. The experimental unit consisted of one Petri dish, containing plant material and a caterpillar The following traits were evaluated: larval stage duration (LSt), food intake weight(IW), final larva weight (FW), mean larva weight (MW), feces (F), assimilated (A) and metabolized food weight (M), relative consumption rate (RCR), relative metabolic rate (RMR), relative growth rate (RGR), conversion efficiency of ingested food (CEI), apparent digestibility (AD), conversion efficiency of digested food (CED), and leaf area consumed (LAC). The diagnosis of multicollinearity, analysis of canonical variables, genetic divergence, hierarchical clustering, factor analysis and canonical correspondence analysis were carried out to perform multivariate analysis. After the multicollinearity test, the traits FW, IW, RCR, AD, and LAC were maintained for further analysis. The traits IW, FW and AD were determinant in the resistance by antixenosis expressed by the varieties Zapalote Chico and Arachida, for the varieties Composto Gaúcho and Composto Márcia the determining characteristics were RCR and LAC and for the variety UEM J1 the variable LAC showed greater importance. Variety Arachida was considered resistant to S. frugiperda by antixenosis and can be used in the future as a source of favorable alleles to breed resistant popcorn hybrids. The traits relative consumption rate, apparent digestibility and leaf area consumed were considered key traits in the identification of resistance against S. frugiperda in popcorn genotypes.

Downloads

Não há dados estatísticos.

Referências

Aaliya, K., Qamar, Z., Ahmad, N. I., Ali, Q., Munim, F. A., & Husnain, T. (2016). Transformation, evaluation of gtgene and multivariate genetic analysis for morpho-physiological and yield attributing traits in Zea mays. Genetika, 48(1), 423-433. DOI: http://doi.org/10.2298/GENSR1601423A

Cabrera-Toledo, J. M., Carballo-Carballo, A., Mejía-Contreras, J. A., García-de los Santos, G., & Vaquera-Huerta, H. (2019). Caracterización de poblaciones sobresalientes de maíz de la raza zapalote chico. Revista Fitotecnia Mexicana, 42(3), 269-279. DOI: https://doi.org/10.35196/rfm.2019.3.269

Caranhato, A. L. H., Trindade, R. W. R., Uhdre, R. S., Pinto, R. J. B., Scapim, C. A., & Paterniani, M. E. A. G. Z. (2022). Genetic improvement in popcorn. Revista Brasileira de Milho e Sorgo, 21, 1-25. DOI: https://doi.org/10.18512/rbms2022v21e1272

Cattell, R. B. (1965). A biometrics invited paper. Factor analysis: An introduction to essentials I. The purpose and underlying models. Biometrics, 21(1), 190-215. DOI: https://doi.org/10.2307/2528364

Cruz, C. D. (2016). Genes Software-extended and integrated with the R, Matlab and Selegen. Acta Scientiarum. Agronomy, 38(4), 547-552. DOI: https://doi.org/10.4025/actasciagron.v38i4.32629

Cruz, C. D., Carneiro, P. C. S., & Regazzi, A. J. (2014). Modelos biométricos aplicados ao melhoramento genético. Viçosa, MG: Editora UFV.

Friendly, M., & Sigal, M. (2017). Graphical methods for multivariate linear models in psychological research: An R tutorial. The Quantitative Methods for Psychology, 13(1), 20-45. DOI: https://doi.org/10.20982/tqmp.13.1.p020

Greenacre, M. J. (1984). Theory and applications of correspondence analysis. London, UK: Academic Press.

He, L. M., Wang, T. L., Chen, Y. G., Ge, S. S., Wyckhuys, K. A. G., & Wu, K. M. (2021). Larval diet affects development and reproduction of East Asian strain of the fall armyworm, Spodoptera frugiperda. Journal of Integrative Agriculture, 20(3), 736-744. DOI: https://doi.org/10.1016/S2095-3119(19)62879-0

Hebei Cici Co., Ltd. (2018). Popcorn market by type (microwave popcorn and ready-to-eat popcorn) and end user (household and commercial) - Global opportunity analysis and industry forecast, 2017-2023. Retrieved on Mar. 10, 2022 from https://www.indiampopcorn.com/news/popcorn-market-by-type-microwave-popcorn-and-ready-to-eat-popcorn-and-end-user-household-and-commercial-global-opportunity-analysis-and-industry-forecast-2017-2023/

Johnson, R. A., & Wichern, D. W. (2002). Applied multivariate statistical analysis (v. 5, n. 8). Upper Saddle River, NJ: Prentice hall.

Juárez, M. L., Murúa, M. G., García, M. G., Ontivero, M., Vera, M. T., Vilardi, J. C., ... Willink, E. (2012). Host association of Spodoptera frugiperda (Lepidoptera: Noctuidae) corn and rice strains in Argentina, Brazil, and Paraguay. Journal of Economic Entomology, 105(2), 573-582. DOI: https://doi.org/10.1603/EC11184

Keith, T. Z., & Reynolds, M. R. (2018). Using confirmatory factor analysis to aid in understanding the constructs measured by intelligence tests. In D. P. Flanagan, & E. M. McDonough (Eds.), Contemporary intellectual assessment: Theories, tests, and issues (p. 853-900). New York, NY: Guilford Press

Mojena, R. (1977). Hierarchical grouping methods and stopping rules: an evaluation. The Computer Journal, 20(4), 359-363. DOI: https://doi.org/10.1093/comjnl/20.4.359

Montgomery, D. C., Peck, E. A., & Vining, G. G. (2021). Introduction to linear regression analysis. New Jersey, NY: John Wiley & Sons.

Nyfjäll, M. (2002). Aspects on correspondence analysis plots under complex survey sampling designs. Uppsala University, Department of Information Science. Retrieved on Aug. 17, 2022 from https://urn:nbn:se:uu:diva-42867

Oliveira, N. C. D., Suzukawa, A. K., Pereira, C. B., Santos, H. V., Hanel, A., Albuquerque, F. A. D., & Scapim, C. A. (2018). Popcorn genotypes resistance to fallarmy worm. Ciência Rural, 48(2), 1-6. DOI: https://doi.org/10.1590/0103-8478cr20170378

Omoto, C., Bernardi, O., Salmeron, E., Sorgatto, R. J., Dourado, P. M., Crivellari, A., ... Head, G. P. (2016). Field‐evolved resistance to Cry1Ab maize by Spodoptera frugiperda in Brazil. Pest Management Science, 72(9), 1727-1736. DOI: https://doi.org/10.1002/ps.4201

Overton, K., Maino, J. L., Day, R., Umina, P. A., Bett, B., Carnovale, D., … Reynolds, O. L. (2021). Global crop impacts, yield losses and action thresholds for fall armyworm (Spodoptera frugiperda): A review. Crop Protection, 145, 105641. DOI: https://doi.org/10.1016/j.cropro.2021.105641

Paiva, L. A., Corrêa, F., Silva, C. L. T., de Lima Moura, T., Silva, F. C., Silva Araújo, M., & Jesus, F. G. (2016). Resistance of corn genotypes to fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae). African Journal of Biotechnology, 15(35), 1877-1882. DOI: https://doi.org/10.5897/AJB2016.15399

Prunier, J. G., Colyn, M., Legendre, X., Nimon, K. F., & Flamand, M. C. (2015). Multicollinearity in spatial genetics: separating the wheat from the chaff using commonality analyses. Molecular Ecology, 24(2), 263-283. DOI: https://doi.org/10.1111/mec.13029

Sanches, R. E., Suzukawa, A. K., Contreras-Soto, R. I., Rizzardi, D. A., Kuki, M. C., Zeffa, D. M., ... Scapim, C. A. (2019). Multivariate analysis reveals key traits of fall armyworm resistance in tropical popcorn genotypes. Bragantia, 78(2), 175-182. DOI: https://doi.org/10.1590/1678-4499.20180230

SAS Institute. (2015). Base SAS 9.2 Procedures Guide. Cary, NC: SAS Institute Inc.

Sathua, S. K., Shahi, J. P., Mahato, A., Gayatonde, V., & Kumar, P. (2018). Molecular diversity analysis of maize (Zea mays L.) inbreds using SSR markers. Electronic Journal of Plant Breeding, 9(3), 1122-1129. DOI: https://doi.org/10.5958/0975-928X.2018.00140.0

Scriber, J. M., & Slansky Jr., F. (1981). The nutritional ecology of immature insects. Annual Review of Entomology, 26(1), 183-211. DOI: https://doi.org/10.1146/annurev.en.26.010181.001151

Souza Crubelati-Mulat, N. C., Baleroni, A. G., Contreras-Soto, R. I., Ferreira, C. J. B., Castro, C. R., Albuquerque, F. A., & Scapim, C. A. (2020). Evaluation of resistance to Spodoptera frugiperda in sweet and field corn genotypes. Maydica, 64(3), 1-7.

Stipp, O. J., Junior, O. P., Rossi, E., Rosa, J. C., Uhdre, R. S., Rizzardi, D. A., ... & Pinto, R. J. B. (2024). Agricultural traits and popping expansion of the popcorn hybrid IAC 125 under different plant densities and irrigation water depth levels. Acta Scientiarum. Agronomy, 46(1), e62929. DOI: https://doi.org/10.4025/actasciagron.v46i1.62929

R Core Team (2013). R: A language and environment for statistical computing. Vienna, AT: R Foundation for Statistical Computing.

Ter Braak, C. J. F. (1987). The analysis of vegetation-environment relationships by canonical correspondence analysis. Vegetatio, 69(1-3), 69-77. DOI: https://doi.org/10.1007/978-94-009-4061-1_7

Veturi, Y., Kump, K., Walsh, E., Ott, O., Poland, J., Kolkman, J. M., ... Wisser, R. J. (2012). Multivariate mixed linear model analysis of longitudinal data: An information-rich statistical technique for analyzing plant disease resistance. Phytopathology, 102(11), 1016-1025. DOI: https://doi.org/10.1094/PHYTO-10-11-0268

Vile, D., Pervent, M., Belluau, M., Vasseur, F., Bresson, J., Muller, B., ... Simonneau, T. (2012). Arabidopsis growth under prolonged high temperature and water deficit: independent or interactive effects?. Plant, Cell & Environment, 35(4), 702-718. DOI: https://doi.org/10.1111/j.1365-3040.2011.02445.x

Vivodík, M., Petrovičová, L., Balážová, Ž., & Gálová, Z. (2017). Genetic diversity of maize accessions (Zea mays L.) Cultivated from Europe using microsatellites markers. In Agrobiodiversity for improving nutrition, health and life quality (p. 524-528). Retrieved on May 5, 2022 from https://agrobiodiversity.uniag.sk/scientificpapers/article/view/134

Waldbauer, G. P. (1968). The consumption and utilization of food by insects. Advances in Insect Physiology, 5, 229-288. DOI: https://doi.org/10.1016/S0065-2806(08)60230-1

Publicado
2023-12-12
Como Citar
Kuroda , A. T., Rosa, J. C., Caranhato, A. L. H., Almeida , L. F. A. de, Garcia, G. D. L., Demitto, G. A., Souza, R. M. B. de, & Albuquerque, F. A. de. (2023). Selection of popcorn genotypes resistant to Spodoptera frugiperda and identification of resistance-related key traits. Acta Scientiarum. Agronomy, 46(1), e65102. https://doi.org/10.4025/actasciagron.v46i1.65102
Seção
Melhoramento Vegetal

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus