Post-genomic analysis of Monosporascus cannonballus and Macrophomina phaseolina - potential target selection
Resumo
Monosporascus cannonballus Pollack & Uecker and Macrophomina phaseolina Tassi (Goid) are phytopathogenic fungi responsible for causing "root rot and vine decline" in melon (Cucumis melo L.). Currently, cultural management practices are predominantly employed to control these pathogens, as the use of pesticides not only has detrimental environmental impacts but has also proven ineffective against them. These fungi have already undergone molecular characterization, and their genomes are now available, enabling the targeted search for protein targets. Therefore, this study aimed to identify novel target proteins that can serve as a foundation for the development of fungicides for effectively managing these pathogens. The genomes of M. cannonballus (assembly ASM415492v1) and M. phaseolina (assembly ASM2087553v1) were subjected to comprehensive analysis, filtration, and comparison. The proteomes of both fungi were clustered based on functional criteria, including putative and hypothetical functions, cell localization, and function-structure relationships. The selection process for homologs in the fungal genomes included a structural search. In the case of M. cannonballus, a total of 17,518 proteins were re-annotated, and among them, 13 candidate targets were identified. As for M. phaseolina, 30,226 initial proteins were analyzed, leading to the identification of 10 potential target proteins. This study thus provides new insights into the molecular functions of these potential targets, with the further validation of inhibitors through experimental methods holding promise for expanding our knowledge in this area.
Downloads
Referências
Atanasova, V., Bresso, E., Maigret, B., Martins, N. F., & Richard-Forget, F. (2022). Computational strategy for minimizing mycotoxins in cereal crops: Assessment of the biological activity of compounds resulting from virtual screening. Molecules, 27(8), 2582. DOI: https://doi.org/10.3390/molecules27082582
Ben Yaakov, D., Rivkin, A., Mircus, G., Albert, N., Dietl, A. M., Kovalerchick, D., ... & Osherov, N. (2016). Identification and characterization of haemofungin, a novel antifungal compound that inhibits the final step of haem biosynthesis. Journal of Antimicrobial Chemotherapy, 71(4), 946-952. DOI: https://doi.org/10.1093/jac/dkv446
Bereketoglu, C., Arga, K. Y., Eraslan, S., & Mertoglu, B. (2017). Genome reprogramming in Saccharomyces cerevisiae upon nonylphenol exposure. Physiological Genomics, 49(10), 549-566. DOI: https://doi.org/10.1152/physiolgenomics.00034.2017
Bersching, K., & Jacob, S. (2021). The molecular mechanism of fludioxonil action is different to osmotic stress sensing. Journal of Fungi, 7(5), 1-9. DOI: https://doi.org/10.3390/jof7050393
Borell, C. W., Urrestarazu, L. A., & Bhattacharjee, J. K. (1984). Two unlinked lysine genes (LYS9 and LYS14) are required for the synthesis of saccharopine reductase in Saccharomyces cerevisiae. Journal of Bacteriology, 159(1), 429-432. DOI: https://doi.org/10.1128/jb.159.1.429-432.1984
Bouz, G., & Zitko, J. (2021). Inhibitors of aminoacyl-tRNA synthetases as antimycobacterial compounds: an up-to-date review. Bioorganic Chemistry, 110, 104806. DOI: https://doi.org/10.1016/j.bioorg
Bresso, E., Leroux, V., Urban, M., Hammond-Kosack, K. E., Maigret, B., & Martins, N. F. (2016). Structure-based virtual screening of hypothetical inhibitors of the enzyme longiborneol synthase-a potential target to reduce Fusarium head blight disease. Journal of Molecular Modeling, 22(163), 1-13. DOI: https://doi.org/10.1007/s00894-016-3021-1
Carman, G. M., & Han, G. S. (2018). Phosphatidate phosphatase regulates membrane phospholipid synthesis via phosphatidylserine synthase. Advances in Biological Regulation, 67, 49-58. DOI: https://doi.org/10.1016/j.jbior.2017.08.001
Cavalcante, A. L. A., Negreiros, A. M. P., Tavares, M. B., Barreto, É. D. S., Armengol, J., & Sales Júnior, R. (2020). Characterization of five new Monosporascus species: adaptation to environmental factors, pathogenicity to cucurbits and sensitivity to fungicides. Journal of Fungi, 6(3), 1-14. DOI: https://doi.org/10.3390/jof6030169
Dankai, W., Pongpom, M., & Vanittanakom, N. (2018). An investigation into the possible regulation of the expression of genes by yapA in Talaromyces marneffei using the qRT-PCR method. Medical Mycology, 56(6), 735-745. DOI: https://doi.org/10.1093/mmy/myx105
Do, E., Park, M., Hu, G., Caza, M., Kronstad, J. W., & Jung, W. H. (2016). The lysine biosynthetic enzyme Lys4 influences iron metabolism, mitochondrial function and virulence in Cryptococcus neoformans. Biochemical and Biophysical Research Communications, 477(4), 706-711. DOI: https://doi.org/10.1016/j.bbrc.2016.06.123
Dudgeon, D. D., Zhang, N., Ositelu, O. O., Kim, H., & Cunningham, K. W. (2008). Nonapoptotic death of Saccharomyces cerevisiae cells that is stimulated by Hsp90 and inhibited by calcineurin and Cmk2 in response to endoplasmic reticulum stresses. Eukaryotic Cell, 7(12), 2037-2051. DOI: https://doi.org/10.1128/EC.00291-08
Ferreira, G. C., Franco, R., Lloyd, S. G., Moura, I., Moura, J. J., & Huynh, B. H. (1995). Structure and function of ferrochelatase. Journal of Bioenergetics and Biomembranes, 27, 221-229. DOI: https://doi.org/10.1007/BF02110037
Gautam, P., Mushahary, D., Hassan, W., Upadhyay, S. K., Madan, T., Sirdeshmukh, R., ... Sarma, P. U. (2016). In-depth 2-DE reference map of Aspergillus fumigatus and its proteomic profiling on exposure to itraconazole. Sabouraudia, 54(5), 524-536. DOI: https://doi.org/10.1093/mmy/myv122
Gupta, G. K., Sharma, S. K., & Ramteke, R. (2012). Biology, epidemiology and management of the pathogenic fungus Macrophomina phaseolina (Tassi) Goid with special reference to charcoal rot of soybean (Glycine max (L.) Merrill). Journal of Phytopathology, 160(4), 167-180. DOI: https://doi.org/10.1111/j.1439-0434.2012.01884.x
Hernández-Elvira, M., Martínez-Gómez, R., Domínguez-Martin, E., Méndez, A., Kawasaki, L., Ongay-Larios, L., & Coria, R. (2019). Tunicamycin sensitivity-suppression by high gene dosage reveals new functions of the yeast Hog1 MAP kinase. Cells, 8(7), 1-19. DOI: https://doi.org/10.3390/cells8070710
Hogenboom, S., Tuyp, J. J., Espeel, M., Koster, J., Wanders, R. J., & Waterham, H. R. (2004). Mevalonate kinase is a cytosolic enzyme in humans. Journal of Cell Science, 117(4), 631-639. DOI: https://doi.org/10.1242/jcs.00910
Ishikawa, M. S., Ribeiro, N. R., Oliveira, E. C., Almeida, A. A., & Balbi-Peña, M. I. (2018). Seleção de cultivares de soja para resistência à podridão negra da raiz (Macrophomina phaseolina). Summa Phytopathologica, 44(1), 38-44. DOI: https://doi.org/10.1590/0100-5405/178653
Islam, M. S., Haque, M. S., Islam, M. M., Emdad, E. M., Halim, A., Hossen, Q. M., … Alam, M. (2012). Tools to kill: Genome of one of the most destructive plant pathogenic fungi Macrophomina phaseolina. BMC Genomics, 13(493), 1-16. DOI: https://doi.org/10.1186/1471-2164-13-493
Jampilek, J. (2016). Potential of agricultural fungicides for antifungal drug discovery. Expert Opinion on Drug Discovery, 11(1), 1-9. DOI: https://doi.org/10.1517/17460441.2016.1110142
Kingsbury, J. M., Yang, Z., Ganous, T. M., Cox, G. M., & McCusker, J. H. (2004). Novel chimeric spermidine synthase-saccharopine dehydrogenase gene (SPE3-LYS9) in the human pathogen Cryptococcus neoformans. Eukaryotic cell, 3(3), 752-763. DOI: https://doi.org/10.1128/ec.3.3.752-763.2004
Lado, J. P., Arellano, B. Z., Osio, C. A. L., Tendero, B. J. T., de la Vina, C. B., Torio, M. A. O., ... Diaz, M. G. Q. (2019). Early differential expression of galactomannan biosynthesis genes in ‘Makapuno’ coconut (Cocos nucifera L.) revealed by the de novo assembly and analysis of endosperm transcriptome. Philippine Agricultural Scientist, 102, 6-24.
Li, C., He, Q., Zhang, F., Yu, J., Li, C., Zhao, T., ... Chen, J. (2019). Melatonin enhances cotton immunity to Verticillium wilt via manipulating lignin and gossypol biosynthesis. The Plant Journal, 100(4), 784-800. DOI: https://doi.org/10.1111/tpj.14477
Liebmann, B., Mühleisen, T. W., Müller, M., Hecht, M., Weidner, G., Braun, A., ... Brakhage, A. A. (2004). Deletion of the Aspergillus fumigatus lysine biosynthesis gene lysF encoding homoaconitase leads to attenuated virulence in a low-dose mouse infection model of invasive aspergillosis. Archives of Microbiology, 181, 378-383. DOI: https://doi.org/10.1007/s00203-004-0667-3
Liu, C., Li, X., Yang, R., Mo, Y., Wang, Y., Xian, F., ... Wang, F. (2014). The protective roles of S-adenosylmethionine decarboxylase (SAMDC) gene in melon resistance to powdery mildew infection. Horticulture, Environment, and Biotechnology, 55, 557-567. DOI: https://doi.org/10.1007/s13580-014-0026-5
Markakis, E. A., Trantas, E. A., Lagogianni, C. S., Mpalantinaki, E., Pagoulatou, M., Ververidis, F. N., & Goumas, D. E. (2018). First report of root rot and vine decline of melon caused by Monosporascus cannonballus in Greece. Plant Disease, 102(5), 1036. DOI: https://doi.org/10.1094/PDIS-10-17-1568-PDN
Martins, N., Bresso, E., Togawa, R., Urban, M., Antoniw, J., Maigret, B., & Hammond-Kosack, K. (2016). Searching for novel targets to control wheat head blight disease - I-protein identification, 3D modeling and virtual screening. Advances in Microbiology, 6(11), 811-830. DOI: http://dx.doi.org/10.4236/aim.2016.611079
Melo, N. J. A, Lima, A. G., Negreiros, A. M. P., Ambrósio, M. M. Q., Nascimento, L. V., & Sales, R. (2021). Pathogenicity of Macrophomina phaseolina in cultivars and accessions of Cucumis melo. Journal of Plant Pathology, 103(3), 969-972. DOI: https://doi.org/10.1007/s42161-021-00832-2
Mo, H. J., Sun, Y. X., Zhu, X. L., Wang, X. F., Zhang, Y., Yang, J., ... Ma, Z. Y. (2016). Cotton S-adenosylmethionine decarboxylase-mediated spermine biosynthesis is required for salicylic acid-and leucine-correlated signaling in the defense response to Verticillium dahliae. Planta, 243, 1023-1039. DOI: 10.1007/s00425-015-2463-5
Motoyama, T., Kadokura, K., Ohira, T., Ichiishi, A., Fujimura, M., Yamaguchi, I., & Kudo, T. (2005). A two-component histidine kinase of the rice blast fungus is involved in osmotic stress response and fungicide action. Fungal Genetics and Biology, 42(3), 200-212. DOI: https://doi.org/10.1016/j.fgb.2004.11.002
Negreiros, A. M. P., Sales Júnior, R, Rodrigues, A. P. M.S., León, M., & Armengol, J. (2019). Prevalent weeds collected from cucurbit fields in Northeastern Brazil reveal new species diversity in the genus Monosporascus. Annals of Applied Biology, 174(3), 349-363. DOI: https://doi.org/10.1111/aab.12493
Nes, W. D., Zhou, W., Ganapathy, K., Liu, J., Vatsyayan, R., Chamala, S., ... Miranda, M. (2009). Sterol 24-C-methyltransferase: an enzymatic target for the disruption of ergosterol biosynthesis and homeostasis in Cryptococcus neoformans. Archives of Biochemistry and Biophysics, 481(2), 210-218. DOI: https://doi.org/10.1016/j.abb.2008.11.003
Pegg, A. E. (2009). S-Adenosylmethionine decarboxylase. Essays in Biochemistry, 46, 25-46. DOI: https://doi.org/10.1042/bse0460003
Perona, J. J. (2013). Glutaminil-tRNA sintetases. Madame Curie Bioscience Database [Internet]. Retrieved on Aug. 10, 2022 from https://www.ncbi.nlm.nih.gov/books/NBK6506/
Pollack, F. G., & Uecker, F. A. (1974). Monosporascus cannonballus an unusual ascomycete in cantaloupe roots. Mycologia, 66(2), 346-349.
Purushotham, N., Jones, A., Poudel, B., Nasim, J., Adorada, D., Sparks, A., ... Vaghefi, N. (2020). Draft genome resource for Macrophomina phaseolina associated with charcoal rot in sorghum. Molecular Plant-Microbe Interactions, 33(5), 724-726. DOI: https://doi.org/10.1094/MPMI-12-19-0356-A
Radwan, O., Rouhana, L. V., Hartman, G. L., & Korban, S. S. (2014). Genetic mechanisms of host-pathogen interactions for charcoal rot in soybean. Plant Molecular Biology Reporter, 32(3), 617-629. DOI: https://doi.org/10.1007/s11105-013-0686-9
Ríos de Molina, M. C., Taira, M. C., & San Martin de Viale, L. C. (1989). Liver ferrochelatase from normal and hexachlorobenz ene porphyric rats. Studies on their properties. The International Journal of Biochemistry, 21(2), 219-225. DOI: https://doi.org/10.1016/0020-711x(89)90112-2
Robinson, A. J., Natvig, D. O., & Chain, P. S. G. (2020). Genomic analysis of diverse members of the fungal genus Monosporascus reveals novel lineages, unique genome content and a potential bacterial associate. G3 Genes|Genomes|Genetics, 10(8), 2573-2583. DOI: https://doi.org/10.1534/g3.120.401489
Sales Junior, R., Negreiros, A. M. P., Beltrán, R., & Armengol, J. (2018). Podridão de raízes por Monosporascus e declínio de ramas no meloeiro: grave problema sem solução. In U. P. Lopes, & S. J. Micherref (Eds.), Desafios do manejo de doenças radiculares causadas por fungos (p. 111-130). Recife, PE: EDUFRPE.
Sales Júnior, R., Oliveira,O. F., Medeiros, E. V., Guimarães, I. M., Correia, K. C., & Michereff, S. J. (2012). Ervas daninhas como hospedeiras alternativas de patógenos causadores do colapso do meloeiro. Revista Ciência Agronômica, 43(1), 195-198. DOI: https://doi.org/10.1590/S1806-66902012000100024
Sales Junior, R., Silva Neto, A. N. D., Negreiros, A. M. P., Gomes, T. R. R., Ambrósio, M. M. D. Q., & Armengol, J. (2020). Pathogenicity of Macrophomina species collected from weeds in Cowpea. Revista Caatinga, 33(2), 395-401. DOI: https://doi.org/10.1590/1983-21252020v33n212rc
Schutzbach, J. S., Springfield, J. D., & Jensen, J. W. (1980). The biosynthesis of oligosaccharide-lipids. Formation of an alpha-1, 2-mannosyl-mannose linkage. Journal of Biological Chemistry, 255(9), 4170-4175. DOI: https://doi.org/10.1016/S0021-9258(19)85648-X
Tabatabaee, S., Iranbakhsh, A., Shamili, M., & Ardebili, Z. O. (2021). Copper nanoparticles mediated physiological changes and transcriptional variations in microRNA159 (miR159) and mevalonate kinase (MVK) in pepper; potential benefits and phytotoxicity assessment. Journal of Environmental Chemical Engineering, 9(5), 106151. DOI: https://doi.org/10.1016/j.jece.2021.106151
Taj, A., Jia, L., Sha, S., Wang, C., Ullah, H., Haris, M., ... Ma, Y. (2022). Functional analysis and enzyme characterization of mannose-1-phosphate guanylyl transferase (ManB) from Mycobacterium tuberculosis. Research in Microbiology, 173(1-2), 1-10. DOI: https://doi.org/10.1016/j.resmic.2021.103884
Tavares, M. B., Negreiros, A. M. P., Cavalcante, A. L. A., Oliveira, S. H. F., Armengol, J., & Júnior, R. S. (2023). Reaction of non-cucurbitacea to Monosporascus spp. Revista Ciência Agronômica, 54, 1-10. DOI: https://doi.org/10.5935/1806-6690.20230013
Umetsu, N., & Shirai, Y. (2020). Development of novel pesticides in the 21st century. Journal of Pesticide Science, 45(2), 54-74. DOI: https://doi.org/10.1584/jpestics.d20-201
Wang, Y., Lin, W., Yan, H., Neng, J., Zheng, Y., Yang, K., ... Sun, P. (2021). iTRAQ proteome analysis of the antifungal mechanism of citral on mycelial growth and OTA production in Aspergillus ochraceus. Journal of the Science of Food and Agriculture, 101(12), 4969-4979. DOI: https://doi.org/10.1002/jsfa.11140.
Yan, L. Y., Zang, Q. Y., Huang, Y. P., & Wang, Y. H. (2016). First report of root rot and vine decline of melon caused by Monosporascus cannonballus in eastern mainland China. Plant Disease, 100(3), 651. DOI: https://doi.org/10.1094/PDIS-06-15-0655-PDN
Yang, Q., Solairaj, D., Apaliya, M. T., Abdelhai, M., Zhu, M., Yan, Y., & Zhang, H. (2020). Protein expression profile and transcriptome characterization of Penicillium expansum induced by Meyerozyma guilliermondii. Journal of Food Quality, 2020, 1-12. DOI: https://doi.org/10.1155/2020/8056767.
Yin, Q., Yang, R., Ren, Y., Yang, Z., Li, T., Huang, H., ... Chen, Z. (2021). Transcriptomic, biochemical, and morphological study reveals the mechanism of inhibition of Pseudopestalotiopsis camelliae-sinensis by phenazine-1-carboxylic acid. Frontiers in Microbiology, 12, 618476.DOI: https://doi.org/10.3389/fmicb.2021.618476
Zhang, H., Zhang, Z., Xiong, Y., Shi, J., Chen, C., Pan, Y., ... Duan, Y. (2021). Stearic acid desaturase gene negatively regulates the thermotolerance of Pinellia ternata by modifying the saturated levels of fatty acids. Industrial Crops and Products, 166, 113490. DOI: https://doi.org/10.1016/j.indcrop.2021.113490
Zhang, Y., Wei, W., Fan, J., Jin, C., Lu, L., & Fang, W. (2020). Aspergillus fumigatus mitochondrial acetyl coenzyme A acetyltransferase as an antifungal target. Applied and Environmental Microbiology, 86(7), e02986-19. DOI: https://doi.org/10.1128/AEM.02986-19.
DECLARAÇÃO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.