Soil CO2 efflux in coffee agroforestry and full-sun coffee systems
Resumo
Agroforestry systems may show low CO2 efflux, and CO2 efflux contributes to sustainability. This work aimed to evaluate the soil CO2 efflux in coffee plantations cultivated in agroforestry and full-sun systems during the winter in high-altitude tropical climate regions. The work was carried out at three family farms (RO, GI, and PA) in Minas Gerais, Brazil. Two treatments were established: coffee with and without trees, and 20 sampling spots for soil and gases. The air and soil temperatures in the agroforestry systems were lower than in the full-sun systems. The soil moisture content in agroforestry systems was higher than full-sun only on the GI. Except for the agroforestry systems in PA, all the other systems showed an increase in CO2 efflux with increasing soil moisture. This increase was more pronounced in agroforestry systems (RO), followed by full sun (RO). On the GI farm, this correlation was lower in the agroforestry system. Soil CO2 efflux was positively correlated with soil temperature and negatively correlated with total nitrogen, labile carbon and total organic carbon. Therefore, despite the microclimate stability promoted by the agroforestry systems in the winter, no decrease in the soil CO2 efflux was observed when compared to full sun systems.
Downloads
Referências
Araújo, A. V., Partelli, F. L., Oliosi, G., & Pezzopane, J. R. M. (2016). Microclimate, development and productivity of robusta coffee shaded by rubber trees and at full sun. Revista Ciência Agronômica, 47(4), 700-709. DOI: https://doi.org/10.5935/1806-6690.20160084
Assunção, S. A., Pereira, M. G., Rosset, J. S., Berbara, R. L. L., & García, A. C. (2019). Carbon input and the structural quality of soil organic matter as a function of agricultural management in a tropical climate region of Brazil. Science of the Total Environment, 658, 901-911. DOI: https://doi.org/10.1016/j.scitotenv.2018.12.271
Barrios, E., Valencia, V., Jonsson, M., Brauman, A., Hairiah, K., Mortimer, P. E., & Okubo, S. (2018). Contribution of trees to the conservation of biodiversity and ecosystem services in agricultural landscapes. International Journal of Biodiversity Science, Ecosystems Services and Management, 14(1), 1-16. DOI: https://doi.org/10.1080/21513732.2017.1399167
Blair, G. J., Lefroy, R. D. B., & Lisle, L. (1995). Soil carbon fractions based on their degree of oxidation, and development of a carbon management index for agricultural systems. Australian Journal of Agricultural Research, 46(7), 1459-1466. DOI: https://doi.org/10.1071/AR9951459
Bremner, J. M. (1996). Nitrogen - total. Methods of soil analysis. Madison, IA: Soil Science Society of America.
Carmo, D. L., Nannetti, D. C., Dias Junior, M. S., Lacerda, T. M., Nannetti, A. N., & Manuel, L. (2014). Chemical and physical attributes of a latosol and coffee crop nutrition in agroforestry and conventional management systems. Coffee Science, 9(1), 122-131.
Carvalho, A. F., Fernandes-Filho, E. I., Daher, M., Gomes, L. C., Cardoso, I. M., Fernandes, R. B. A., & Schaefer, C. E. (2021). Microclimate and soil and water loss in shaded and unshaded agroforestry coffee systems. Agroforestry Systems, 95, 1-16. DOI: https://doi.org/10.1007/s10457-020-00567-6
Da Matta, F. M., Ronchi, C. P., Maestri, M., & Barros, R. S. (2007). Ecophysiology of coffee growth and production. Brazilian Journal of Plant Physiology, 19(4), 485-510. DOI: https://doi.org/10.1590/S1677-04202007000400014
Duxbury, J. J., Smith, M. S., & Doran, J. W. (1989). Soil organic matter as a source and a sink of plant nutrients. In D. C. Coleman, J. M. Oades, & G. B. Uehara (Eds.), Dynamics of soil organic matter in tropical ecosystems (p. 33-67). Honolulu, US: University of Hawaii.
Embrapa. (1997). Manual de métodos de análises de solos. Rio de Janeiro, RJ: Embrapa/CNPSo.
Fekete, I., Lajtha, K., Kotroczo, Z., Varbíró, G., Varga, C., Toth, J.A., ... Berki, I. (2017). Long-term effects of climate change on carbon storage and tree species composition in a dry deciduous forest. Global Change Biology, 23(8), 3154-3168. DOI: https://doi.org/10.1111/gcb.13669
Giardina, C. P., & Ryan, M. G. (2000). Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature, 404(6780), 858-861. DOI: https://doi.org/10.1038/35009076
Gomes, L. C., Cardoso, I. M., Mendonça, E. S., Fernandes, R. B. A., Lopes, V. S., & Oliveira, T. S. (2016). Trees modify the dynamics of soil CO2 efflux in coffee agroforestry systems. Agricultural and Forest Meteorology, 224, 30-39. DOI: https://doi.org/10.1016/j.agrformet.2016.05.001
Guimarães, G. P., Mendonça, E. S., Passos, R. R., & Andrade, F. V. (2014). Soil aggregation and organic carbon of oxisols under coffee in agroforestry systems. Revista Brasileira de Ciência do Solo, 38(1), 278-287. DOI: https://doi.org/10.1590/S0100-06832014000100028
Gusli, S., Sumeni, S., Sabodin, R., Muqfi, I. H., Nur, M., Hairiah, K., ... Van Noordwijk, M. (2020). Soil organic matter, mitigation of and adaptation to climate change in cocoa–based agroforestry systems. Land, 9(323), 1-18. DOI: https://doi.org/10.3390/land9090323
Han, M., Shi, B., & Jin, G. (2018). Conversion of primary mixed forest into secondary broadleaved forest and coniferous plantations: Effects on temporal dynamics of soil CO2 efflux. Catena, 162, 157-165. DOI: https://doi.org/10.1016/j.catena.2017.12.004
Heinemeyer, A., Dibene, C., Lloyd, A. R., Tortorella, D., Baxter, R., Huntley, B., … Ineson, P. (2011). Soil respiration: implications of the plant-soil continuum and respiration chamber collar-insertion depth on measurement and modelling of soil CO2 efflux rates in three ecosystems. European Journal of Soil Science, 62(1), 82-94. DOI: https://doi.org/10.1111/j.1365-2389.2010.01331.x
Hergoualc’h, K., Blanchart, E., Skiba, U., Hénault, C., & Harmand, J. M. (2012). Changes in carbon stock and greenhouse gas balance in a coffee (Coffea arabica) monoculture versus an agroforestry system with Inga densiflora, in Costa Rica. Agriculture, Ecosystems & Environment, 148, 102-110. DOI: https://doi.org/10.1016/j.agee.2011.11.018
Jácome, M. G. O., Mantovani, J. R., Silva, A. B., Rezende, T. T., & Landgraf, P. R. C. (2020). Soil attributes and coffee yield in an agroforestry system. Coffee Science, 15, 1-9. DOI: https://doi.org/10.25186/.v15i.1676
Jia, H., Guo, H., Walsh, M. J., Bennett, J., Zhang, Y., & Wang, G. (2018). Long-term maize stalk retention reduces seedtime soil respiration. Chilean Journal of Agricultural Research, 78(3), 350-359. DOI: http://dx.doi.org/10.4067/S0718-58392018000300350
Jose, S., & Bardhan, S. (2012). Agroforestry for biomass production and carbon sequestration: an overview. Agroforestry Systems, 86(2), 105-111. DOI: https://doi.org/10.1007/s10457-012-9573-x
Kim, D., Oren, R., Clark, J. S., Palmroth, S., Oishi, A. C., McCarthy, H. R., … Johnsen, K. (2017). Dynamics of soil CO2 efflux under varying atmospheric CO2 concentrations reveal dominance of slow processes. Global Change Biology, 23(9), 3501-3512. DOI: https://doi.org/10.1111/gcb.13713
Kochiieru, M., Lamorski, K., Feiza, V., Feizienė, D., & Volungevičius, J. (2018). The effect of soil macroporosity, temperature and water content on CO2 efflux in the soils of different genesis and land management. Zemdirbyste-Agriculture, 105(4), 291-298. DOI: https://doi.org/10.13080/z-a.2018.105.037
La Scala, N., Bolonhezi, D., & Pereira, G. T. (2006). Short-term soil CO2 emission after conventional and reduced tillage of a no-till sugar cane area in southern Brazil. Soil and Tillage Research, 91(1), 244-248. DOI: https://doi.org/10.1016/j.still.2005.11.012
Leblanc, S. G., Chen, J. M., Fernandes, R., Deering, D. W., & Conley, A. (2005). Methodology comparison for canopy structure parameters extraction from digital hemispherical photography in boreal forests. Agricultural and Forest Meteorology, 129(3-4), 187-207. DOI: https://doi.org/10.1016/j.agrformet.2004.09.006
Lenka, N. K., & Lal, R. (2013). Soil aggregation and greenhouse gas flux after 15 years of wheat straw and fertilizer management in a no-till system. Soil and Tillage Research, 126, 78-89. DOI: https://doi.org/10.1016/j.still.2012.08.011
Li, X. A., Ge, T. D., Chen, Z., Wang, S. M., Ou, X. K., Wu, Y., … Wu, J. P. (2020). Enhancement of soil carbon and nitrogen stocks by abiotic and microbial pathways in three rubber‐based agroforestry systems in Southwest China. Land Degradation & Development, 31(16), 2507-2515. DOI: https://doi.org/10.1002/ldr.3625
Oliosi, G., Giles, J. A. D., Rodrigues, W. P., Ramalho, J. C., & Partelli, F. L. (2016). Microclimate and development of Coffea canephora cv. Conilon under different shading levels promoted by Australian cedar (Toona ciliata M. Roem. var. Australis). Australian Journal of Crop Science, 10(4), 528-538. DOI: https://doi.org/10.21475/ajcs.2016.10.04.p7295x
Padovan, M. D. P., Brook, R. M., Barrios, M., Cruz-Castillo, J. B., Vilchez-Mendoza, S. J., Costa, A. N., & Rapidel, B. (2018). Water loss by transpiration and soil evaporation in coffee shaded by Tabebuia rosea Bertol. and Simarouba glauca dc. compared to unshaded coffee in sub-optimal environmental conditions. Agricultural and Forest Meteorology, 248(15), 1-14. DOI: https://doi.org/10.1016/j.agrformet.2017.08.036
Parker, T. C., Clemmensen, K. E., Friggens, N. L., Hartley, I. P., Johnson, D., Lindahl, B. D., … Wookey, P. A. (2020). Rhizosphere allocation by canopy-forming species dominates soil CO2 efflux in a subarctic landscape. New Phytologist, 227(6), 1591-1593. DOI: https://doi.org/10.1111/nph.16573
Posada, J. M., & Schuur, E. A. G. (2011). Relationships among precipitation regime, nutrient availability, and carbon turnover in tropical rain forests. Oecologia, 165(3), 783-795. DOI: https://doi.org/10.1007/s00442-010-1881-0
Pueschel, P., Buddenbaum, H., & Hill, J. (2012). An efficient approach to standardizing the processing of hemispherical images for the estimation of forest structural attributes. Agricultural and Forest Meteorology, 160, 1-13. DOI: https://doi.org/10.1016/j.agrformet.2012.02.007
R Core Team. (2017). R: A language and environment for statistical computing. Vienna, AT: R Foundation for Statistical Computing. Retrieved on Aug. 10, 2023 from https://www.R-project.org/
Schindlbacher, A., Schnecker, J., Takriti, M., Borken, W., & Wanek, W. (2015). Microbial physiology and soil CO2 efflux after 9 years of soil warming in a temperate forest–no indications for thermal adaptations. Global Change Biology, 21(11), 4265-4277. DOI: https://doi.org/10.1111/gcb.12996
Shang, C., & Tiessen, H. (1997). Organic matther lability in a tropical oxisol: evidence from shifting cultivation, chemical oxidation, particle size, density, and magnetic fractionations. Soil Science, 162(2), 795-807. DOI: https://doi.org/10.1097/00010694-199711000-00004
Soil Survey Staff. (2014). Keys to soil taxonomy (12nd ed.). Washington, DC: USDA-Natural Resources Conservation Service.
Thomazin, A., Mendonça, E. S., Cardoso, I. M., & Garbin, M. L. (2015). SOC dynamics and soil quality index of agroforestry systems in the Atlantic rainforest of Brazil. Geoderma Regional, 5, 15-24. DOI: https://doi.org/10.1016/j.geodrs.2015.02.003
Todd-Brown, K. E., Randerson, O. J. T., Post, W. M., Hoffman, F. M., Tarnocai, C., Schuur, E. A. G., & Allison, S. D. (2013). Causes of variation in soil carbon simulations from CMIP5 earth system models and comparison with observations. Biogeoscience, 10(3), 1717-1736. DOI: https://doi.org/10.5194/bg-10-1717-2013
Tumwebaze, S. B., & Byakagaba, P. (2016). Soil organic carbon stocks under coffee agroforestry systems and coffee monoculture in Uganda. Agriculture, Ecosystems & Environment, 216, 188-193. DOI: https://doi.org/10.1016/j.agee.2015.09.037
Valente, F. D. A., Gomes, L. C., Castro, M. F., Neves, J. C. L., Silva, I. R., & Oliveira T. S. (2020). Influence of different tree species on autotrophic and heterotrophic soil respiration in a mined area under reclamation. Land, Degradation & Development, 32(15), 4288-4299. DOI: https://doi.org/10.22541/au.160578572.23960002/v1
Van't Hoff, J. H. (1898). Lectures on theoretical and physical chemistry: Part I: Chemical dynamics. London, UK: Edward Arnold.
Vezzani, F. M., Anderson, C., Meenken, E., Gillespie, R., Peterson, M., & Beare, M. H. (2018). The importance of plants to development and maintenance of soil structure, microbial communities and ecosystem functions. Soil and Tillage Research, 175, 139-149. DOI: https://doi.org/10.1016/j.still.2017.09.002
Vitória, Y. T. D., Leite, M. C. T., Delgado, R. C., Moreira, G. F., Oliveira, E. C. D., Quartezani, W. Z., & Sales, R. A. D. (2019). Soil carbon dioxide efflux in conilon coffee (Coffea canephora Pierre ex A. Froehner) plantations in different phenological phases in tropical climate in Brazil. Chilean Journal of Agricultural Research, 79(3), 366-375. DOI: http://dx.doi.org/10.4067/S0718-58392019000300366
Yeomans, J. C., & Bremner, J. M. (1988). A rapid and precise method for routine determination of organic carbon in soil. Communications in Soil Science and Plant Analysis, 19(13), 1467-1476. DOI: https://doi.org/10.1080/00103628809368027.
Zaro, G. C., Caramori, P. H., Junior, G. M. Y., Sanquetta, C. R., Androcioli Filho, A., Nunes, A. L. P., ... Voroney, P. (2019). Carbon sequestration in an agroforestry system of coffee with rubber trees compared to open-grown coffee in southern Brazil. Agroforestry Systems, 94, 799-809. DOI: https://doi.org/10.1007/s10457-019-00450-z
DECLARAÇÃO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.