Combining silicon, organic matter, and Trichoderma harzianum to mitigate salt stress in forage sorghum

Palavras-chave: Sorghum sudanense; salinity; fungus; semiarid.

Resumo

Salt stress is a major abiotic factor limiting plant growth worldwide, particularly in arid and semiarid regions where excessive groundwater use in irrigation leads to high salt concentrations. To address this issue, this study investigated the efficacy of silicon, either alone or in combination with Trichoderma harzianum and organic matter, in mitigating salt stress in forage sorghum. The experiment took place in a saline Fluvisol in Parnamirim, a semiarid region of Pernambuco, Brazil, and followed a randomized block design with five treatments and four replicates: sorghum (control); sorghum + Si; sorghum + Si + OM (organic matter); sorghum + Si + T (T. harzianum); and sorghum + Si + T + OM. Sorghum plants were assessed over three cycles (initial cut and two regrowths) from June 2021 to April 2022. The combined treatments of Si + OM, Si + T, and Si + T + OM increased plant growth by 42.17, 35.49, and 27.51%, respectively, compared to the control. Similarly, these treatments led to biomass accumulation gains of 39.42, 40.44, and 31.77% in sorghum plants relative to the control. Silicon alone did not yield significant growth or biomass accumulation improvements. The application of silicon in conjunction with T. harzianum and/or organic matter shows promise in enhancing forage sorghum growth under saline stress conditions in semiarid regions.

Downloads

Não há dados estatísticos.

Referências

Abdelaal, K. A. A., Mazrou, Y. S. A., & Hafez, Y. M. (2020). Silicon foliar application mitigates salt stress in sweet pepper plants by enhancing water status, photosynthesis, antioxidant enzyme activity and fruit yield. Plants, 9(6), 1-15. DOI: https://doi.org/10.3390/plants9060733

Abdolzadeh, A., Zarooshan, M., Sadeghipour, H. R., & Mehrabanjoubani, P. (2022). Effect of silicon and nano silicon application on wheat (C3) and sorghum (C4) under salinity stress. Journal of Plant Production Research, 29(1), 173-190. DOI: https://doi.org/ 10.22069/JOPP.2022.18995.2802

Afzal, I., Basra, S. M. A., Farooq, M., & Nawaz, A. (2006). Alleviation of salinity stress in spring wheat by hormonal priming with ABA, salicylic acid and ascorbic acid. International Journal of Agriculture & Biology, 8(1), 23-28.

Ahmad, A., Khan, W. U., Ali Shah, A., Yasin, N. A., Naz, S., Ali, A., … Iram Batool, A. (2021). Synergistic effects of nitric oxide and silicon on promoting plant growth, oxidative stress tolerance and reduction of arsenic uptake in Brassica juncea. Chemosphere, 262, 128384. DOI: https://doi.org/10.1016/j.chemosphere.2020.128384

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration: Guidelines for computing crop requirements. Rome, IT: FAO. (Irrigation and Drainage Paper, No. 56, FAO, 56, 300).

Anam, G. B., Reddy, M. S., & Ahn, Y. H. (2019). Characterization of Trichoderma asperellum RM-28 for its sodic/saline-alkali tolerance and plant growth promoting activities to alleviate toxicity of red mud. Science of the Total Environment, 662, 462-469. DOI: https://doi.org/10.1016/j.scitotenv.2019.01.279

Benìtez, T., Rincón, A. M., Limón, M. C., & Codón, C. A. (2004). Biocontrol mechanisms of {Trichoderma} strains. International Microbiology, 7, 249-260. DOI: https://scielo.isciii.es/pdf/im/v7n4/Benitez.pdf

Cantuário, F. S., Luz, J. M. Q., Pereira, A. I. A., Salomão, L. C., & Re-Bouças, T. N. H. (2014). Podridão apical e escaldadura em frutos de pimentão submetidos a estresse hídrico e doses de silício. Horticultura Brasileira, 32(2), 215-219. DOI: https://doi.org/10.1590/S0102-05362014000200017

Chakma, R., Ullah, H., Sonprom, J., Biswas, A., Himanshu, S. K., & Datta, A. (2022). Effects of silicon and organic manure on growth, fruit yield, and quality of grape tomato under water-deficit stress. Silicon, 15(2), 763-774. DOI: https://doi.org/10.1007/s12633-022-02043-5

Coskun, D., Britto, D. T., Huynh, W. Q., & Kronzucker, H. J. (2016). The role of silicon in higher plants under salinity and drought stress. Frontiers in Plant Science, 7(1072), 1-7. DOI: https://doi.org/10.3389/fpls.2016.01072

Dhiman, P., Rajora, N., Bhardwaj, S., Sudhakaran, S. S., Kumar, A., Raturi, G., … Deshmukh, R. (2021). Fascinating role of silicon to combat salinity stress in plants: An updated overview. Plant Physiology and Biochemistry, 162, 110-123. DOI: https://doi.org/10.1016/j.plaphy.2021.02.023

Embrapa. (2013). Sistema brasileiro de classificação de solos (v.3). Rio de Janeiro, RJ: Embrapa/Centro Nacional de Pesquisa de Solos.

Freitas, G. A., Sousa, C. R., Capone, A., Afférri, F. S., Vaz de Melo, A., & Silva, R. R. (2012). Adubação orgânica no sulco de plantio e sua influência no desenvolvimento do sorgo. Journal of Biotechnology and Biodiversity, 3(1), 61-67. DOI: https://doi.org/10.20873/jbb.uft.cemaf.v3n1.freitas

Gupta, B. K., Sahoo, K. K., Anwar, K., Nongpiur, R. C., Deshmukh, R., Pareek, A., & Singla-Pareek, S. L. (2021a). Silicon nutrition stimulates Salt-Overly Sensitive (SOS) pathway to enhance salinity stress tolerance and yield in rice. Plant Physiology and Biochemistry, 166, 593-604. DOI: https://doi.org/10.1016/j.plaphy.2021.06.010

Gupta, S., Smith, P. M. C., Boughton, B. A., Rupasinghe, T. W. T., Natera, S. H. A., & Roessner, U. (2021b). Inoculation of barley with Trichoderma harzianum T-22 modifies lipids and metabolites to improve salt tolerance. Journal of Experimental Botany, 72(20), 7229-7246. DOI: https://doi.org/10.1093/jxb/erab335

Harman, G. E., Howell, C. R., Viterbo, A., & Che, I. (2004). Trichoderma species-opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2(1), 43-56. DOI: https://doi.org/10.1038/nrmicro797

Huang, L., Liu, Y., Ferreira, J. F. S., Wang, M., Na, J., Huang, J., & Liang, Z. (2022). Long-term combined effects of tillage and rice cultivation with phosphogypsum or farmyard manure on the concentration of salts, minerals, and heavy metals of saline-sodic paddy fields in Northeast China. Soil and Tillage Research, 215, 105222. DOI: https://doi.org/10.1016/j.still.2021.105222

Hurtado, A. C., Chiconato, D. A., Prado, R. M., Sousa Junior, G. S., Viciedo, D. O., Díaz, Y. P., … Gratão, P. L. (2021). Silicon alleviates sodium toxicity in sorghum and sunflower plants by enhancing ionic homeostasis in roots and shoots and increasing dry matter accumulation. Silicon, 13(2), 475-486. DOI: https://doi.org/10.1007/s12633-020-00449-7

National Institute of Meteorology [INMET]. (2023). Retrieved on Feb. 20,2023 from https://portal.inmet.gov.br/

Ikram, M., Ali, N., Jan, G., Iqbal, A., Hamayun, M., Jan, F. G., … Lee, I.-J. (2019). Trichoderma reesei improved the nutrition status of wheat crop under salt stress. Journal of Plant Interactions, 14(1), 590-602. DOI: https://doi.org/10.1080/17429145.2019.1684582

Jardim, A. M. R. F., Silva, G. Í. N., Biesdorf, E. M., Pinheiro, A. G., Silva, M. V., Araújo Júnior, G. N., ... Silva, T. G. F. (2020). Production potential of Sorghum bicolor (L.) Moench crop in the Brazilian semiarid: review. Pubvet, 14(4), 1-12. DOI: https://doi.org/10.31533/pubvet.v14n4a550.1-13

Kaloterakis, N., van Delden, S. H., Hartley, S., & De Deyn, G. B. (2021). Silicon application and plant growth promoting rhizobacteria consisting of six pure Bacillus species alleviate salinity stress in cucumber (Cucumis sativus L). Scientia Horticulturae, 288, 1-12. DOI: https://doi.org/10.1016/j.scienta.2021.110383

Kong, F., Ling, X., Iqbal, B., Zhou, Z., & Meng, Y. (2023). Soil phosphorus availability and cotton growth affected by biochar addition under two phosphorus fertilizer levels. Archives of Agronomy and Soil Science, 69(1), 18-31. DOI: https://doi.org/10.1080/03650340.2021.1955355

Kumar, K., Manigundan, K., & Amaresan, N. (2017). Influence of salt tolerant Trichoderma spp. on growth of maize (Zea mays) under different salinity conditions. Journal of Basic Microbiology, 57(2), 141-150. DOI: https://doi.org/10.1002/jobm.201600369

Magalhães, P. C., Durães, F. O. M., & Rodrigues, J. A. S. (2003). Fisiologia da planta de sorgo (Comunicado Técnico, 86). Sete Lagoas, MG: Embrapa Milho e Sorgo.

Maia Júnior, S. D. O., Silva, J. A. C., Santos, K. P. O., Andrade, J. R., Silva, J. V., & Endres, L. (2018). Caracterização morfológica e produtiva e suas correlações em cultivares de cana-de-açúcar. Revista Ciência Agrícola, 16(1), 31-42. DOI: https://doi.org/10.28998/rca.v16i1.4060

Maswada, H. F., Djanaguiraman, M., & Prasad, P. V. V. (2018). Seed treatment with nano-iron (III) oxide enhances germination, seeding growth and salinity tolerance of sorghum. Journal of Agronomy and Crop Science, 204(6), 577-587. DOI: https://doi.org/10.1111/jac.12280

Migliorini, P., Rossetti, C., Almeida, A. S., Ávila, N. C., Madruga, N. P., Mattos, F. P., & Tunes, L. V. M. (2021). Quality of calcium and magnesium silicate coated Phaseolus vulgaris seeds. Colloquium Agrariae, 17(1), 56-65. DOI: https://doi.org/10.5747/ca.2021.v17.n1.a420

Milanesi, P. M., Blume, E., Muniz, M. F. B., Reiniger, L. R. S., Na’toniolli, Z. I., Junges, E., & Lupatini, M. (2013). Detecção de Fusarium spp. e Trichoderma spp. e antagonismo de Trichoderma sp. em soja sob plantio direto. Semina: Ciências Agrárias, 34(6), 3219-3234. DOI: https://doi.org/10.5433/1679-0359.2013v34n6Supl1p3219

Miranda, M. F. A., Freire, M. B. G. S., Almeida, B. G., Freire, A. G., Freire, F. J., & Pessoa, L. G. M. (2018). Improvement of degraded physical attributes of a saline-sodic soil as influenced by phytoremediation and soil conditioners. Archives of Agronomy and Soil Science, 64(9), 1207-1221. DOI: https://doi.org/10.1080/03650340.2017.1419195

Munns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell and Environment, 25(2), 239-250. DOI: https://doi.org/10.1046/j.0016-8025.2001.00808.x

Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651-681. DOI: https://doi.org/10.1146/annurev.arplant.59.032607.092911

Musa, Y., Bahrun, A. H., & Kardina. (2021). Application of Trichoderma on single bud sugarcane (Saccharum officinarum L) seedlings originated from different stems. IOP Conference Series: Earth and Environmental Science, 807, 1-7. DOI: https://doi.org/10.1088/1755-1315/807/4/042059

Naveed, M., Sajid, H., Mustafa, A., Niamat, B., Ahmad, Z., Yaseen, M., … Chen, J.-T. (2020). Alleviation of salinity-induced oxidative stress, improvement in growth, physiology and mineral nutrition of canola (Brassica napus L.) through calcium-fortified composted animal manure. Sustainability, 12(3), 1-17 DOI: https://doi.org/10.3390/su12030846

Naveed, M., Ditta, A., Ahmad, M., Mustafa, A., Ahmad, Z., Conde-Cid, M., … Fahad, S. (2021). Processed animal manure improves morpho-physiological and biochemical characteristics of Brassica napus L. under nickel and salinity stress. Environmental Science and Pollution Research, 28, 45629-45645. DOI: https://doi.org/10.1007/s11356-021-14004-3

Oliveira, L. M., Mendonça, V., Moura, E. A., Irineu, T. H. S., Figueiredo, F. R. A., Melo, M. F., …Andrade, A. D. M. (2022). Salt stress and organic fertilization on the growth and biochemical metabolism of Hylocereus costaricensis (red pitaya) seedlings. Brazilian Journal of Biology, 84, 1-11. DOI: https://doi.org/10.1590/1519-6984.258476

Pessoa, L. G. M., Silva, L. F. S., Freire, M. B. G. S., Ferreira-Silva, S. L., Green, C. H. M., Melo, H. F., ... Freire, F. J. (2022). Effectiveness of soil conditioners to enhance salt extraction ability of Salicornia ramosissima in saline-sodic soil for different soil moisture contents. International Journal of Phytoremediation, 24(5), 447-455. DOI: https://doi.org/10.1080/15226514.2021.1952924

Pinheiro, P. R., Lima Nunes, L. R., Pinheiro, C. L., Abud, H. F., Torres, S. B., & Dutra, A. S. (2022). Potassium silicate as an inducer of abiotic stress resistance in grain sorghum seeds. Revista Ciência Agronômica, 53, 1-10. DOI: https://doi.org/10.5935/1806-6690.20220025

Rawat, L., Singh, Y., Shukla, N., & Kumar, J. (2011). Alleviation of the adverse effects of salinity stress in wheat (Triticum aestivum L.) by seed biopriming with salinity tolerant isolates of Trichoderma harzianum. Plant and Soil, 347(1), 387-400. DOI: https://doi.org/10.1007/s11104-011-0858-z

R Core Team (2019). R: A language and environment for statistical computing. Vienna, AT: R Foundation for Statistical Computing. Retrieved on Feb. 16, 2023 from https://www.R-project.org

Richards, L. A. (1954). Diagnosis and improvement of saline and alkali soils. Washington, D.C.: USDA.

Rodrigues, A. C. F., Rodrigues, E S., Silva, C. W. G., & Galvão, S. R. S. (2019). Classificação da precipitação pluviométrica anual para o município de Parnamirim – PE utilizando Índice de Anomalia de Chuva (IAC). Revista Semiárido de Visu, 7(3), 275-284. DOI: https://doi.org/10.31416/rsdv.v7i3.76

Sivila, N., & Alvarez, S. (2013). Producción artesanal y control de calidad del hongo antagonista Trichoderma. San Salvador de Jujuy, AR: Universidad Nacional de Jujuy, Facultad de Ciencias Agrarias.

Soni, P. G., Basak, N., Rai, A. K., Sundha, P., Narjary, B., Kumar, P., … Yadav, R. K. (2021). Deficit saline water irrigation under reduced tillage and residue mulch improves soil health in sorghum-wheat cropping system in semi-arid region. Scientific Reports, 11(1), 1-13. DOI: https://doi.org/10.1038/s41598-020-80364-4

Sousa, R. A., Lacerda, C. F., Aguiar, E. M., & Praxedes, S. C. (2017). Efeito da aplicação de biofertilizante líquido no desenvolvimento do sorgo irrigado com água salobra. Científica, 46(4), 380-397. DOI: https://doi.org/10.15361/1984-5529.2018v46n4p380-397

Sousa, R. A., Lacerda, C. F., Neves, A. L. R., Costa, R. N. T., Hernandez, F. F. F., & Sousa, C. H. C. (2018). Crescimento do sorgo em função da irrigação com água salobra e aplicação de compostos orgânicos. Revista Brasileira de Agricultura Irrigada, 12(1), 2315-2326. DOI: https://doi.org/10.7127/rbai.v12n100696

Taiz, L., & Zeiger, E. (2017). Fisiologia e desenvolvimento vegetal. Porto Alegre, RS: Artmed.

Xie, Z., Song, F., Xu, H., Shao, H., & Song, R. (2014). Effects of silicon on photosynthetic characteristics of maize (Zea mays L.) on alluvial soil. The Scientific World Journal, 2014, 1-6. DOI: https://doi.org/10.1155/2014/718716

Yarami, N., & Sepaskhah, A. R. (2015). Saffron response to irrigation water salinity, cow manure and planting method. Agricultural Water Management, 150, 57-66. DOI: https://doi.org/10.1016/j.agwat.2014.12.004

Yin, L., Wang, S., Tanaka, K., Fujihara, S., Itai, A., Den, X., & Zhang, S. (2016). Silicon-mediated changes in polyamines participate in silicon-induced salt tolerance in Sorghum bicolor L. Plant Cell and Environment, 39(2), 245-258. DOI: https://doi.org/10.1111/pce.12521

Yousaf, M. T. B., Nawaz, M. F., Zia ur Rehman, M., Gul, S., Yasin, G., Rizwan, M., & Ali, S. (2021). Effect of three different types of biochars on eco-physiological response of important agroforestry tree species under salt stress. International Journal of Phytoremediation, 23(13), 1412-1422. DOI: https://doi.org/10.1080/15226514.2021.1901849

Yusnawan, E., Taufiq, A., Wijanarko, A., Susilowati, D. N., Praptana, R. H., Chandra‐hioe, M. V., Supriyo, A., & Inayati, A. (2021). Changes in volatile organic compounds from salt‐tolerant Trichoderma and the biochemical response and growth performance in saline‐stressed groundnut. Sustainability, 13, 1-16. DOI: https://doi.org/10.3390/su132313226

Zhang, F., Wang, Y., Liu, C., Chen, F., Ge, H., Tian, F., … Zhang, Y. (2019). Trichoderma harzianum mitigates salt stress in cucumber via multiple responses. Ecotoxicology and Environmental Safety, 170, 436-445. DOI: https://doi.org/10.1016/j.ecoenv.2018.11.084

Publicado
2024-04-03
Como Citar
Silva, J. O. N. da, Silva, L. F. dos S., Abrantes, E. M. de, Silva, L. R. da, Alencar, E. L. do N., Souza, E. S. de, da Silva, S. L. F., & Pessoa, L. G. M. (2024). Combining silicon, organic matter, and Trichoderma harzianum to mitigate salt stress in forage sorghum. Acta Scientiarum. Agronomy, 46(1), e66528. https://doi.org/10.4025/actasciagron.v46i1.66528
Seção
Produção Vegetal

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus