Aerial spraying for downy mildew control in grapevines using a remotely piloted aircraft

Palavras-chave: Plasmopora viticola; aerial spraying; low volume.

Resumo

Downy mildew is a major problem for grape growers, as this disease is difficult to control. Synthetic fungicides are used to treat downy mildew with handheld backpack and tractor sprayer applications, with high chemical exposure by operators. As important tools for maximising yield, application technologies must be studied to optimise control efficiency. The objective of this study was to evaluate the efficiency of fungicide spray application using Remotely Piloted Aircraft (RPA) for the control of downy mildew in grapevine, with different spray volumes. The study was divided into two experiments using 4 vine lines, 10 blocks and 5 treatments with different mixture volumes: Experiment 1 with RPA application of 5 mixture volumes - 0, 22, 44, 66, and 88 L ha−1; Experiment 2 with RPA application of 3 mixture volumes - 44, 66, and 88 L ha−1 and a backpack application of one mixture volume - 800 L ha−1. Coverage percentage, droplet density and volume median diameter (VMD) were evaluated. Downy mildew severity on grapevine leaves was assessed using visual analysis and a diagrammatic scale. The application of 44 L ha−1 provided the greatest coverage and droplet density in the upper and middle strata; however, the backpack application had a better droplet distribution than the RPA application. Treatments of 44 L ha−1 with RPA and backpack application (800 L ha−1) provided the best disease control. In the trellis system, RPA application must be improved because of the low coverage in the lower parts of the plant, and further studies with different spray nozzles and application heights are needed.

Downloads

Não há dados estatísticos.

Referências

Ahmad, F., Qiu, B., Dong, X., Ma, J., Huang, X., Ahmed, S., & Chandio, F. A. (2020) Effect of operational parameters of UAV sprayer on spray deposition pattern in target and off-target zones during outer field weed control application. Computers and Electronics in Agriculture, 172, 105350. DOI: https://doi.org/10.1016/j.compag.2020.105350

Antuniassi, U. R., & Boller, W. (2011). Tecnologia de aplicação de fungicidas. In U.R. Antuniassi, & W. Boller (Eds.), Tecnologia de aplicação para culturas anuais. Passo Fundo, RS: Aldeia Norte; Botucatu, SP: FEPAF.

Bajagić, B., Sedlar, A., Latinović, J., Višacki, V., & Latinović, N. (2022). Different water consumption and fungicide drift in control of grapevine downy mildew. BIO Web of Conferences, 50, 1-4. DOI: https://doi.org/10.1051/bioconf/20225003015

Bhering, S. G., Santos H. G., Bognola, I. A., Cúrcio, G. R., Manzatto, C. V., Junior, W. C., … Souza, J. S. (2008). Mapa de solos do Estado do Paraná: legenda atualizada. Rio de Janeiro, RJ: Embrapa Solos; Colombo, PR: Embrapa Florestas.

Buffara, C. R. S., Angelotti, F., Vieira, R. A., Bogo, A., Tessmann, D. J., & Bem, B. P. (2014). Elaboration and validation of a diagrammatic scale to assess downy mildew severity in grapevine. Ciência Rural, 44(8), 1384-1391. DOI: https://doi.org/10.1590/0103-8478cr20131548

Carvalho, F. K., Chechetto, R. G., Mota, A. A., & Antuniassi, U. R. (2020). Challenges of aircraft and drone spray applications. Outlooks on Pest Management, 31(2), 83-88. DOI: https://doi.org/10.1564/v31_apr_07

Coimbra, R. F. F., & Catalano, F. M. (1999). Estudo experimental sobre pontas de asa para uma aeronave agrícola. Revista Brasileira de Engenharia Agrícola e Ambiental, 3(1), 99-105. DOI: https://doi.org/10.1590/1807-1929/agriambi.v3n1p99-105

Cunha, J. P. A. R., Juliatti, F. C., & Reis, E. F. (2014). Tecnologia de aplicação de fungicida no controle da ferrugem asiática da soja: resultados de oito anos de estudos em Minas Gerais e Goiás. Bioscience Journal, 30(4), 950-957.

Eichhorn, K. W., & Lorenz, D. H. (1984). Phaenologische Entwicklungsstadien der Rebe. European and Mediterranean Plant Protection Organization, 14(2), 295-298.

Falchieri, D. (2013). New application method for reducing pesticide rate/ha and cost in plant protection. Outlooks on Pest Management, 24(6), 257-261. DOI: https://doi.org/10.1564/v24_dec_05

Garrido, L. R., & Sônego, O. R. (2007). Manejo de doenças da videira. In Manejo integrado de doenças de fruteiras. Brasília, DF: Sociedade Brasileira de Fitopatologia.

Giles, D., & Billing, R. (2015). Deployment and performance of a UAV for crop spraying. Chemical Engineering Transactions, 44, 307-312. DOI: https://doi.org/10.3303/CET1544052

Hernandes, J. L.; Júnior, M. J. P., & Moura, M. F. (2021). Vantagens e limites dos principais sistemas de condução de videiras utilizados no Brasil. Visão Agrícola, 14, 22-27.

Kharim, M. N. A., Wayayok, A., Shariff, A. R. M., Abdullah, A. F., & Husin, E. M. (2019). Droplet deposition density of organic liquid fertilizer at low altitude UAV aerial spraying in rice cultivation. Computers and Electronics in Agriculture, 167, 105045. DOI: https://doi.org/10.1016/j.compag.2019.105045

Kist, B. B.; Carvalho, C., & Beling, R. R. (2022). Anuário Brasileiro de Horti & Fruti 2022. Santa Cruz do Sul, RS: Editora Gazeta. Retrieved on Nov. 14, 2022 from https://www.editoragazeta.com.br/produto/anuario-brasileiro-de-horti-fruti-2022

Li, X., Giles, D. K., Niederholzer, F. J., Andaloro, J. T., Lang, E. B., & Watson, L. J. (2021). Evaluation of an unmanned aerial vehicle as a new method of pesticide application for almond crop protection. Pest Management Science, 77(1), 527-537. DOI: https://doi.org/10.1002/ps.6052

Martin, D. E., Woldt, W. E., & Latheef, M. A. (2019). Effect of application height and ground speed on spray pattern and droplet spectra from remotely piloted aerial application systems. Drones, 3(4), 1-21. DOI: https://doi.org/10.3390/drones3040083

Martinez-Guanter, J., Agüera, P., Agüera, J., & Pérez-Ruiz, M. (2020). Spray and economics assessment of a UAV-based ultra-low-volume application in olive and citrus orchards. Precision Agriculture, 21(6), 226-243. DOI: https://doi.org/10.1007/s11119-019-09665-7

Mello, L. M. R., & Machado, C. A. E. (2020). Vitivinicultura brasileira: panorama 2019. Bento Gonçalves, RS: Embrapa Uva e Vinho. (Comunicado Técnico, 214).

Michael, C., Gil, E., Gallart, M., Kanetis, L., & Stavrinides, M. C. (2022). Evaluating the effectiveness of low volume spray application using air-assisted knapsack sprayers in wine vineyards. International Journal of Pest Management, 68(2), 148-157. DOI: https://doi.org/10.1080/09670874.2020.1807652

Ministério da Agricultura, Pecuária e Abastecimento [MAPA]. (2021). Portaria MAPA Nº 298, 22 de Setembro 2021. Estabelece regras para operação de aeronaves remotamente pilotadas destinadas à aplicação de agrotóxicos e afins, adjuvantes, fertilizantes, inoculantes, corretivos e sementes. Brasilia, DF: Diário Oficial da União.

Neto, J. O. S., Sasaki, R. S., & Alvarenga, C. B. (2021). Aeronave remotamente pilotada (RPA) para aplicação de agrotóxico. Research, Society and Development, 10(12), 1-9. DOI: http://dx.doi.org/10.33448/rsd-v10i12.20573

Peruch, L. A. M., Medeiros, A. M., Della Bruna, E., & Stadinik, M. (2007). Biomassa cítrica, extrato de algas, calda bordalesa e fosfitos no controle do míldio da videira, cv. Niágara Branca. Revista de Ciências Agroveterinárias, 6(2), 143-148.

R Core Team. (2021). R: A language and environment for statistical computing. Vienna, AT: R Foundation for Statistical Computing. Retrieved on Dec. 10, 2022 from https://www.R-project.org/

Scudeler, F., Raetano, C. G., Araujo, D., & Bauer, F. C. (2004). Cobertura da pulverização e maturação de frutos do cafeeiro com ethephon em diferentes condições operacionais. Bragantia, 63(1), 129-139. DOI: https://doi.org/10.1590/S0006-87052004000100013

Shan, C., Wang, G., Wang, H., Xie, Y., Wang, H., Wang, S., ... Lan, Y. (2021). Effects of droplet size and spray volume parameters on droplet deposition of wheat herbicide application by using UAV. International Journal of Agricultural and Biological Engineering, 14(1), 74-81. DOI: https://doi.org/10.25165/j.ijabe.20211401.6129

Wang, G., Lan, Y., Qi, H., Chen, P., Hewitt, A., & Han, Y. (2019). Field evaluation of an unmanned aerial vehicle (UAV) sprayer: effect of spray volume on deposition and the control of pests and disease in wheat. Pest Management Science, 75(6), 1546-1555. DOI: https://doi.org/10.1002/ps.5321

Wang, G., Li, X., Andaloro, J., Chen, P., Song, C., Shan, C., & Lan, Y. (2020). Deposition and biological efficacy of UAV-based low-volume application in rice fields. International Journal of Precision Agricultural Aviation, 3(2), 65-72. DOI: https://doi.org/10.33440/j.ijpaa.20200302.86

Wolf, R. E., & Daggupati, N. P. (2009). Nozzle type effect on soybean canopy penetration. Applied Engineering in Agriculture, 25(1), 23-30. DOI: https://doi.org/10.13031/2013.25426

Publicado
2024-04-03
Como Citar
Oliveira, L. de S. de, Grigolo, C. R., Pertille, R. H., Modolo, A. J., Campos, J. R. da R., Elias, A. R., & Citadin, I. (2024). Aerial spraying for downy mildew control in grapevines using a remotely piloted aircraft. Acta Scientiarum. Agronomy, 46(1), e66613. https://doi.org/10.4025/actasciagron.v46i1.66613
Seção
Fitossanidade

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus