Soybean crop yield estimation using artificial intelligence techniques

Palavras-chave: deep learning; image acquisition; smartphone; grain and pod count.

Resumo

It is common to observe conventional methods for estimating soybean crop yields, making the process slow and susceptible to human error. Therefore, the objective was to develop a model based on deep learning to estimate soybean yield using digital images obtained through a smartphone. To do this, the ability of the proposed model to correctly classify pods that have different numbers of grains, count the number of pods and grains, and then estimate the soybean crop yield was analyzed. As part of the study, two types of image acquisition were performed for the same plant. Image acquisition 1 (IA1) included capturing the images of the entire plant, pods, leaves, and branches. Image acquisition 2 (IA2) included capturing the images of the pods removed from the plant and deposited in a white container. In both acquisition methods, two soybean cultivars, TMG 7063 Ipro and TMG 7363 RR, were used. In total, combining samples from both cultivars, 495 images were captured, with each image corresponding to a sample (plant) obtained through methods AI1 and AI2. With these images, the total number of pods in the entire dataset was 46,385 pods. For the training and validation of the model, the data was divided into subsets of training, validation, and testing, representing, respectively, 80, 10, and 10% of the total dataset. In general, when using the data from IA2, the model presented errors of 7.50 and 5.32% for pods and grains, respectively. These values are considerably lower than when the model used the IA1 data, where it presented errors of 34.69 and 35.25% for pod and grain counts, respectively. Therefore, the data used from IA2 provide better results to the model.

Downloads

Não há dados estatísticos.

Referências

Alves, G. R., Teixeira, I. R., Melo, F. R., Souza, R. T. G., & Silva, A. G. (2018). Estimativa da produtividade de soja com redes neurais artificiais. Acta Scientiarum. Agronomy, 40(1), 1-9. DOI: https://doi.org/10.4025/actasciagron.v40i1.35250

Apolo-Apolo, O. E., Martínez-Guanter, J., Egea, G., Raja, P., & Pérez-Ruiz, M. (2020). Deep learning techniques for estimation of the yield and size of citrus fruits using a UAV. European Journal of Agronomy, 115, 126030. DOI: https://doi.org/10.1016/j.eja.2020.126030

Arsenovic, M., Karanovic, M., Sladojevic, S., Anderla, A., & Stefanovic, D. (2019). Solving current limitations of deep learning based approaches for plant disease detection. Symmetry, 11(7), 1-21. DOI: https://doi.org/10.3390/sym11070939

Carvalho, O. L. F., Carvalho Júnior, O. A., Albuquerque, A. O., Bem, P. P., Silva, C. R., Ferreira, P. H. G., ... Borges, D. L. (2021). Instance segmentation for large, multi-channel remote sensing imagery using mask-RCNN and a mosaicking approach. Remote Sensing, 13(1), 1-24. DOI: https://doi.org/10.3390/rs13010039

Davis, C. C., Champ, J., Park, D. S., Breckheimer, I., Lyra, G. M., Xie, J., … Bonnet, P. (2020). A new method for counting reproductive structures in digitized herbarium specimens using mask R-CNN. Frontiers in Plant Science, 11, 1–13. DOI: https://doi.org/10.3389/fpls.2020.01129

Durmus, H., Gunes, E. O., & Kirci, M. (2017). Disease detection on the leaves of the tomato plants by using deep learning. In 6th International Conference on Agro-Geoinformatics, Agro-Geoinformatics 2017. Fairfax, VA: IEEE. DOI: https://doi.org/10.1109/Agro-Geoinformatics.2017.8047016

Dutta, A., & Zisserman, A. (2019). The VIA annotation software for images, audio and video. In MM 2019 - Proceedings of the 27th ACM International Conference on Multimedia (p. 2276-2279). New York, NY: Association for Computing Machinery. DOI: https://doi.org/10.1145/3343031.3350535

Ganesh, P., Volle, K., Burks, T. F., & Mehta, S. S. (2019). Deep orange: Mask R-CNN based orange detection and segmentation. IFAC-PapersOnLine, 52(30), 70-75. DOI: https://doi.org/10.1016/j.ifacol.2019.12.499

Ghosal, P., Nandanwar, L., Kanchan, S., Bhadra, A., Chakraborty, J., & Nandi, D. (2019). Brain tumor classification using ResNet-101 based squeeze and excitation deep neural network. In 2nd International Conference on Advanced Computational and Communication Paradigms, ICACCP 2019, May 2020. Gangtok, IN: IEEE. DOI: https://doi.org/10.1109/ICACCP.2019.8882973

Gonzalez, T. F. (2007). Handbook of approximation algorithms and metaheuristics. New York, NY: Chapman and Hall/CRC Press. DOI: https://doi.org/10.1201/9781420010749

He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2020). Mask R-CNN. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(2), 386-397. DOI: https://doi.org/10.1109/TPAMI.2018.2844175

Lee, J., Nazki, H., Baek, J., Hong, Y., & Lee, M. (2020). Artificial intelligence approach for tomato detection and mass estimation in precision agriculture. Sustainability, 12(21), 1-15. DOI: https://doi.org/10.3390/su12219138

Li, Y. U. E., Jia, J., Zhang, L. I., Khattak, A. M., Sun, S. H. I., Gao, W., & Wang, M. (2019). Soybean seed counting based on pod image using two-column convolution neural network. IEEEAccess, 7, 64177-64185. DOI: https://doi.org/10.1109/ACCESS.2019.2916931

Maxwell, A. E., Pourmohammadi, P., & Poyner, J. D. (2020). Mapping the topographic features of mining-related valley fills using mask R-CNN deep learning and digital elevation data. Remote Sensing, 12(3), 1-23. DOI: https://doi.org/10.3390/rs12030547

Mekhalfi, M. L., Nicolò, C., Bazi, Y., Al Rahhal, M. M., & Al Maghayreh, E. (2021). Detecting crop circles in google earth images with mask R-CNN and YOLOv3. Applied Sciences, 11(5), 1-12. DOI: https://doi.org/10.3390/app11052238

Miller, J. J., Schepers, J. S., Shapiro, C. A., Arneson, N. J., Eskridge, K. M., Oliveira, M. C., & Giesler, L. J. (2018). Characterizing soybean vigor and productivity using multiple crop canopy sensor readings. Field Crops Research, 216, 22-31. DOI: https://doi.org/10.1016/j.fcr.2017.11.006

Nevavuori, P., Narra, N., & Lipping, T. (2019). Crop yield prediction with deep convolutional neural networks. Computers and Electronics in Agriculture, 163, 104859. DOI: https://doi.org/10.1016/j.compag.2019.104859

Ngugi, L. C., Abelwahab, M., & Abo-Zahhad, M. (2020). Tomato leaf segmentation algorithms for mobile phone applications using deep learning. Computers and Electronics in Agriculture, 178, 105788. DOI: https://doi.org/10.1016/j.compag.2020.105788

Ramos, P. J., Prieto, F. A., Montoya, E. C., & Oliveros, C. E. (2017). Automatic fruit count on coffee branches using computer vision. Computers and Electronics in Agriculture, 137, 9-22. DOI: https://doi.org/10.1016/j.compag.2017.03.010

Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-CNN : towards real-time object detection with region proposal networks. arXiv:1506.01497 [cs.CV], 1, 1-14. DOI: https://doi.org/10.48550/arXiv.1506.01497

Sun, J., Di, L., Sun, Z., Shen, Y., & Lai, Z. (2019). County-level soybean yield prediction using deep CNN-LSTM model. Sensors, 19(20), 1-21. DOI: https://doi.org/10.3390/s19204363

Tedesco-Oliveira, D., Pereira, R., Maldonado Jr., W., & Zerbato, C. (2020). Convolutional neural networks in predicting cotton yield from images of commercial fi elds. Computers and Electronics in Agriculture, 171, 105307. DOI: https://doi.org/10.1016/j.compag.2020.105307

Terliksiz, A. S., & Altylar, D. T. (2019). Use of deep neural networks for crop yield prediction: A case study of soybean yield in lauderdale county, Alabama, USA. In 8th International Conference on Agro-Geoinformatics, Agro-Geoinformatics 2019 (p. 9-12). Istanbul, TR: IEEE. DOI: https://doi.org/10.1109/Agro-Geoinformatics.2019.8820257

Uzal, L. C., Grinblat, G. L., Namías, R., Larese, M. G., Bianchi, J. S., Morandi, E. N., & Granitto, P. M. (2018). Seed-per-pod estimation for plant breeding using deep learning. Computers and Electronics in Agriculture, 150, 196-204. DOI: https://doi.org/10.1016/j.compag.2018.04.024

Wei, M. C. F., & Molin, J. P. (2020). Soybean yield estimation and its components : A linear regression approach. Agriculture, 10(8), 1-13. DOI: https://doi.org/10.3390/agriculture10080348

Xu, B., Wang, W., Falzon, G., Kwan, P., Guo, L., Chen, G., … Schneider, D. (2020). Automated cattle counting using Mask R-CNN in quadcopter vision system. Computers and Electronics in Agriculture, 171. DOI: https://doi.org/10.1016/j.compag.2020.105300

Publicado
2024-08-09
Como Citar
Bandeira, P. M. da C., Villar, F. M. de M., Pinto, F. de A. de C., Silva, F. L. da, & Bandeira, P. P. da C. (2024). Soybean crop yield estimation using artificial intelligence techniques. Acta Scientiarum. Agronomy, 46(1), e67040. https://doi.org/10.4025/actasciagron.v46i1.67040
Seção
Produção Vegetal

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus