Impacts of bulk density and water content on the tire-soil contact area of agricultural field vehicles
Resumo
We tested the hypothesis that the increase in soil stiffness, induced by variations in bulk density and water content at the tire-soil contact interface, causes a reduction in the contact area. For this, we examined the contact area from different tire-ground contact scenarios and compared the measurements and simulations using a contact area description model. Front and rear tractor tires were used for the measurement of the contact area under tilled soil, sugarcane field, unpaved road, and paved ground scenarios, which induced different bulk densities and water content levels. The results revealed that soil stiffness reduced the tire-soil contact area. The tire-soil contact area increased as the water content increased and the bulk density was reduced. For the front tractor tire, the theoretical contact area was similar to the values found for tilled soil, but there was a large difference between the measurements (2,200 cm2, for the tilled soil) and the theoretical estimates (3,100 cm2) for the rear tractor tire (likely induced by tire dimensions). Our results suggest that increases in soil stiffness reduce the tire-soil contact area. The higher the soil bulk density and the lower the soil moisture, the lower the contact area. The results also revealed that the tire tractor tread might reduce the contact at the hard surface, making the shape of the contact area more geometrically irregular and different from those predicted by models using regular geometry (e.g., cycles, ellipses, or rectangles). This study suggests that two-body (soil and tire) contact models for deformable surfaces should be used in future tire-soil contact models of agricultural field vehicles.
Downloads
Referências
Boussinesq, J. (1885). Application des potentiels ´a l’etude de l’equilibre et du mouvement des solides ´elastiques. Paris, FR: Gautiher-Villars.
Diserens, E. (2009). Calculating the contact area of truck tyres in the field. Soil & Tillage Research, 103(2), 302-309. DOI: https://doi.org/10.1016/j.still.2008.10.020
Farhadi, P., Golmohammadi, A., Sharifi, A., & Shahgholi, G. (2018). Potential of three-dimensional footprint mold in investigating the effect of tractor tyre contact volume changes on rolling resistance. Journal of Terramechanics, 78, 63-72. DOI: https://doi.org/10.1016/j.jterra.2018.05.003
Frohlich, O. K. (1934). Druckverteilung im Baugrunde. Vienna, AT: Springer Verlag.
Gupta, S. C., & Larson, W. E. (1982). Predicting soil mechanical behavior during tillage. Predicting tillage effects on soil physical properties and processes. In P. W. Unger, D. M. Van Doren Jr, F. D. Whisler, & E. L. Skidmore (Eds.), Modeling soil mechanical behavior during tillage (p. 151-178). Madison, WI: American Society of Agronomy. DOI: https://doi.org/10.2134/asaspecpub44.c10
Hallonborg, U. (1996). Super ellipse as tyre-ground contact area. Journal of Terramechanics, 33(3), 125-132. DOI: https://doi.org/10.1016/S0022-4898(96)00013-4
Horn, R., & Fleige, H. (2003). A method for assessing the impact of load on mechanical stability and on physical properties of soils. Soil & Tillage Research, 73(1-2), 89-99. DOI: https://doi.org/10.1016/S0167-1987(03)00102-8
Johnson, C. E., & Burt, E. C. (1990). A method of predicting soil stress state under tires. American Society of Agricultural and Biological Engineers, 33(33), 713-717. DOI: https://doi.org/10.13031/2013.31390
Keller, T. (2005). A model to predict the contact area and the distribution of vertical stress below agricultural tyres from readily available tyre parameters. Biosystems Engineering, 92(1), 85-96. DOI: https://doi.org/10.1016/j.biosystemseng.2005.05.012
Keller, T., Defossez, P., Weisskopf, P., Arvidsson, J., & Richard, G. (2007). SoilFlex: A model for prediction of soil stresses and soil compaction due to agricultural field traffic including a synthesis of analytical approaches. Soil & Tillage Research, 93(2), 391-411. DOI: https://doi.org/10.1016/j.still.2006.05.012
Lima, R. P., Silva, A. R., & Silva, Á. P. (2021). Soilphysics: An R package for simulation of soil compaction induced by agricultural field traffic. Soil & Tillage Research, 206, 104824. DOI: https://doi.org/10.1016/j.still.2020.104824
Mohsenimanesh, A., & Ward, S. M. (2007). On-the-move monitoring of soil-tire interaction on soft soil using wireless data acquisition. American Society of Agricultural and Biological Engineers, 50(6), 1919-1925. DOI: https://doi.org/10.13031/2013.24087
O’Sullivan, M. F., Henshall, J. K., & Dickson, J. W. (1999). A simplified method for estimating soil compaction. Soil & Tillage Research, 49(4), 325-335. DOI: https://doi.org/10.1016/S0167-1987(98)00187-1
Poritsky, H. (1950). Stress and deflections of cylindrical bodies in cone with applications to contact of gears and locomotive wheels. Journal of Applied Mechanics, 17(2), 191-201. DOI: https://doi.org/10.1115/1.4010099
Ptak, W., Czarnecki, J., Brennensthul, M., Lejman, K., & Małecka, A. (2022). Evaluation of agriculture tires deformation using innovative 3D scanning method. Agriculture, 12(8), 1-15. DOI: https://doi.org/10.3390/agriculture12081108
Saffih-Hdadi, K., Defossez, P., Richard, G., Cui, Y. J., Tang, A. M., & Chaplain, V. A. (2009). Method for predicting soil susceptibility to the compaction of surface layers as a function of water content and bulk density. Soil & Tillage Research, 105(1), 96-103. DOI: https://doi.org/10.1016/j.still.2009.05.012
Schjønning, P., Lamandé, M., Tøgersen, F. A., Arvidsson, J., & Keller, T. (2008). Modelling effects of tyre inflation pressure on the stress distribution near the soil–tyre interface. Biosystems Engineering, 99(1), 119-133. DOI: https://doi.org/10.1016/j.biosystemseng.2007.08.005
Silva, R. B. D., Iori, P., Souza, Z. M. D., Pereira, D. D. M. G., Vischi Filho, O. J., & Silva, F. A. D. M. (2016). Contact pressures and the impact of farm equipment on Latosol with the presence and absence of sugarcane straw. Ciência e Agrotecnologia, 40(3), 265-278. DOI: https://doi.org/10.1590/1413-70542016403001716
Shöne, W. (1953). Druckverteilung im boden und bodenverformung unter schlepperreifen. Grundlagen der Landtechnik, 5, 49-63.
Soil Survey Staff. (2014). Keys to soil taxonomy (12th ed.). Washington, DC: NRCS.
Stettler, M., Keller, T., Weisskopf, P., Lamand´e, M., Lassen, P., & Schjønning, P. (2014). Terranimo® – A web-based tool for evaluating soil compaction. Landtechnik, 69(3), 132-137.
Teimourlou, R. F., & Taghavifar, H. (2015). Determination of the super-elliptic shape of tire-soil contact area using image processing method. Cercetari Agronomice in Moldova, 48(2), 5-14. DOI: https://doi.org/10.1515/cerce-2015-0026
van den Akker, J. J. H. (2004). SOCOMO: A soil compaction model to calculate soil stresses and the subsoil carrying capacity. Soil & Tillage Research, 79(1), 113-127. DOI: https://doi.org/10.1016/j.still.2004.03.021
Way, T. R., Kishimoto, T., Burt, E. C., & Bailey, A. C. (2000). Soil-tire interface pressures of a low aspect ratio tractor tire. In R. Horn, J. J. H. van den Akker, & J. Arvidsson (Eds.), Advances in GeoEcology, 32 (p. 82-92). Reiskirchen, GE: Catena Verlag GMBH.
Yong, R. N., Boonsinsuk, P., & Fattah, E. A. (1980). Prediction of tyre performance on soft soil relative to carcass stiffness and contact areas. Journal of Terramechanics, 17(3), 131-147. DOI: https://doi.org/10.1016/0022-4898(80)90023-3
DECLARAÇÃO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.