Field management of yellow melon (Cucumis melo L.) with silicon sources

Palavras-chave: enzymatic activity; gas exchange; postharvest quality; resistance induction.

Resumo

This study aimed to evaluate the effect of silicon and acibenzolar-S-methyl sources on the development of yellow melon (Cucumis melo L.) in the field and the occurrence of diseases in different years. The treatments consisted ofthe silicon sources Agrosilício® (3 g L−1), Rocksil® (3 g L−1), and Chelal® Si (2 L 100 L−1), the additional treatments acibenzolar-S-methyl (ASM) (2 mM) and the fungicide thiabendazole (400 mL 100 L−1), and a control (sterile distilled water). The following characteristics were evaluated: natural incidence of diseases; gas exchange: CO2 assimilation rate, transpiration, stomatal conductance, internal CO2 concentration, water use efficiency, instantaneous water use efficiency, and carboxylation; postharvest aspects: fruit weight, pulp thickness, pulp firmness, titratable acidity, pH, soluble solids, and vitamin C content; productivity; and the enzymatic activity of peroxidases, polyphenol oxidases, and phenylalanine ammonia-lyase. No significant response was observed for naturally occurring diseases. Treatments with Chelal®Si, Rocksil®, and Thiabendazole® increased photosynthetic and transpiration rates in the yellow melon. The silicon and ASM sources did not influence the physicochemical characteristics or the enzymatic activity of fruits. No effect was observed on the biometric characteristics, productivity, and chemical quality of fruits in both years of cultivation. Si sources increased photosynthetic rate and transpiration. However, no diseases were observed during the experimental period. Leaf spraying with silicon and acibenzolar-S-methyl sources did not influence the biometric characteristics and fruit production of yellow melon. The silicon and acibenzolar-S-methyl sources did not induce an increase in the enzymatic activity of peroxidases, polyphenol oxidase, and phenylalanine ammonia-lyase. Fruit production was higher in 2020.

Downloads

Não há dados estatísticos.

Referências

Ahmad, S., Kamran, M., Ding, R., Meng, X., Wang, H., Ahmad, I., & Han, Q. (2019). Exogenous melatonin confers drought stress by promoting plant growth, photosynthetic capacity and antioxidant defense system of maize seedlings. PeerJ, 7, 1-25. DOI: https://doi.org/10.7717/peerj.7793

Alam, A., Hariyanto, B., Ullah, H., Salin, K. R., & Datta, A. (2021). Effects of silicon on growth, yield and fruit quality of cantaloupe under drought stress. Silicon, 13, 3153-3162. DOI: https://doi.org/10.1007/s12633-020-00673-1

Association of Official Analytical Chemists [AOAC]. (1990). Official methods of analysis of the Association of Official Analytical Chemists (15th ed.). Washington, DC: AOAC.

Barbosa, E. D., Melo, R. E., Pimenta, R. M. B., Oliveira, L. J., & Silva, A. E. B. (2022). Produção de mudas de meloeiro sob efeito de diferentes doses de substâncias húmicas no Semiárido Baiano. Diversitas Journal, 7(4), 2356-2370. DOI: https://doi.org/10.48017/dj.v7i4.2297

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. DOI: https://doi.org/10.1016/0003-2697(76)90527-3

Cavalcanti, F. J. A. (2008). Recomendações de adubação para o Estado de Pernambuco: 2ª aproximação (3. ed.). Recife, PE: Instituto Agronômico de Pernambuco.

Cavalcante Neto, J. G., Ferreira, K. T. C., Aragão, F. A. S., Antônio, R. P., & Nunes, G. H. S. (2020). Potential of parent sand hybrids experimental of the yellow melon. Ciência Rural, 50(2), 1-9. DOI: https://doi.org/10.1590/0103-8478cr20190452

Dalastra, G. M., Echer, M. M., Klosowski, E. S., & Hachmann, T. L. (2016). Produção e qualidade de três tipos de melão, variando o número de frutos por planta. Revista Ceres, 63(4), 523-53. DOI: https://doi.org/10.1590/0034-737X201663040013

Dima, S. O., Neamtu, C., Desliu-Avram, M., Ghiurea, M., Capra, L., Radu, E., & Oancea, F. (2020). Plant biostimulant effects of baker’s yeast vinasse and selenium on tomatoes through foliar fertilization. Agronomy, 10(1), 1-19. DOI: https://doi.org/10.3390/agronomy10010133

Etesami, H., & Jeong, B. R. (2018). Silicon (Si): Review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants. Ecotoxicology and Environmental Safety, 147, 881-896. DOI: https://doi.org/10.1016/j.ecoenv.2017.09.063

Gomes, R. S. S., & Nascimento, L. C. (2018). Induction of resistance to Colletotrichum truncatum in lima bean. Arquivos do Instituto Biológico, 85, 1-7. DOI: https://doi.org/10.1590/1808-1657000022018

Gulzar, N. A. L. I., Shah, M. A., & Kamili, A. N. (2021). Silicon supplementation improves early blight resistance in Lycopersicon esculentum Mill. By modulating the expression of defense-related genes and antioxidant enzymes. Biotecnologia, 11(5), 1-13. DOI: https://doi.org/10.1007/s13205-021-02789-6

Instituto Adolfo Lutz [IAL]. (2005). Normas analíticas, métodos químicos e físicos para análise de alimentos. (4. ed.). São Paulo, SP: Instituto Adolfo Lutz.

Lozano, C. S., Rezende, R., Hachmann, T. L., F. A., Santos, S., Lorenzoni, M. Z., & Souza, A. H. C. (2018). Yield and quality of melon under silicon doses and irrigation management in a greenhouse. Pesquisa Agropecuária Tropical, 48(2), 140-146. DOI: https://doi.org/10.1590/1983-40632018v4851265

Ma, J. F., Yamaji, N., Tamai, K., & Mitani, N. (2007). Genotypic difference in silicon uptake and expression of silicon transporter genes in rice. Plant Physiology, 145(3),919-924. DOI: https://doi.org/10.1104/pp.107.107599

Malik, N. A. A., Kumar, I. S., & Nadarajah, K. (2020). Elicitor and receptor molecules: Orchestrators of plant defense and immunity. International Journal of Molecular Sciences, 21(3),1-34. DOI: https://doi.org/10.3390/ijms21030963

Marquez, N., Giachero, M. L., Declerck, S., & Ducasse, D. A. (2021). Macrophomina phaseolina: General characteristics of pathogenicity and methods of control. Frontiers in Plant Science, 12(634397), 1-16. DOI: https://doi.org/10.3389/fpls.2021.634397

Medeiros, D. A., Malaquias, J. P., Malta, A. O., Pereira, W. E., Silva, E. S., Souza, L. T., & Santos, R. F. (2020). Meloeiro orgânico: trocas gasosas e teores foliares de NPK em função de fontes e doses de nitrogênio. Acta Biológica Paranaense, 49(1-4), 89-104. DOI: http:// doi.org/10.5380/abpr.v49i1-2

Park, E., Luo, Y., Marine, S. C., Everts, K. L., Micallef, S. A., Bolten, S., & Stommel, J. (2018). Consumer preference and physicochemical evaluation of organically grown melons. Postharvest Biology and Technology, 141, 77-85. DOI: https://doi.org/10.1016/j.postharvbio.2018.03.001

Preston, H. A. F., Nunes, G. H. S., Preston, W., Souza, E. B., Mariano, R. D. L. R., Datnoff, L. E., & Nascimento, C. W. A. (2021). Slag-based silicon fertilizer improves the resistance to bacterial fruit blotchand fruit quality of melon grown under field conditions. Crop Protection, 147, 105460. DOI: https://doi.org/10.1016/j.cropro.2020.105460

R Core Team. (2022). R: A language and environment for statistical computing. Vienna, AT: R Foundation for Statistical Computing. Retrieved on Mar. 10, 2022 from https://www.r-project.org

Sami, R., Almatrafi, M., Elhakem, A., Alharbi, M., Benajiba, N., & Helal, M. (2021). Effect of nano silicon dioxide coating films on the quality characteristics of fresh-cut cantaloupe. Membranes, 11(2), 1-10. DOI: https://doi.org/10.3390/membranes11020140

Santos, F. A. S., Rezende, R., Wenneck, G. S., Santi, D. C., Saath, R., & Terassi, D. S. (2021). Produtividade do melão rendilhado fertirrigado com silício. Irriga, 1(2), 321-334. DOI: https://doi.org/10.15809/irriga.2021v1n2p321-334

Siegel, B. Z. (1993). Plant peroxidases: anorganism perspective. Plant Growth Regulation, 12, 303-312. DOI: https://doi.org/10.1007/BF00027212

Vendruscolo, E. P., Seleguini, A., Campos, L. F.C., Rodrigues, A. H. A., & Lima, S. F. D. (2018). Desenvolvimento e produção de melão Cantaloupe em função do espaçamento e ambientes de cultivo no Cerrado brasileiro. Revista Colombiana de Ciências Hortícolas,12(2), 397-404. DOI: https://doi.org/10.17584/rcch.2018v12i2.7794

Verma, K. K., Anas, M., Chen, Z., Rajput, V. D., Malviya, M. K., Verma, C. L., … Li, Y. R. (2020). Silicon supply improves leaf gas exchange, antioxidant defense system and growth in Saccharum officinarum responseve to water limitation. Plants, 9(8), 1-19. DOI: https://doi.org/10.3390/plants9081032

Weng, J., Rehman, A., Li, P., Chang, L., Zhang, Y., & Niu, Q. (2022). Physiological and transcriptomic analysis reveals the responses and difference to high temperature and humidity stress in two melon genotypes. International Journal of Molecular Sciences, 23(2), 1-18. DOI: https://doi.org/10.3390/ijms23020734

Würz, D. A., Kowal, A. N., Fagherazzi, A. F., Santos, G., & Leite, L. (2020). Efeito da aplicação foliar de silício nos aspectos produtivos e de qualidade de frutos de morangueiro. Revista Eletrônica Científica da UERGS, 6(2), 144-149. DOI: https://doi.org/10.21674/2448-0479.62.144-149

Yoshioka, H., Mase, K., Yoshioka, M., & Kobayashi, A. S. (2011). Regulatory mechanisms of nitric oxide and reactive oxygen species generation and their role in plant immunity. Nitric Oxide, 25(2), 216-221. DOI: https://doi.org/10.1016/j.niox.2010.12.008

Publicado
2024-08-12
Como Citar
Porcino, M. M., Oliveira, V. de S., Silva, E. C. da, Nunes, M. S., Tico, B. M., Holanda, G. C. de, Souza, M. dos S. de, & Nascimento, L. C. do. (2024). Field management of yellow melon (Cucumis melo L.) with silicon sources . Acta Scientiarum. Agronomy, 46(1), e68231. https://doi.org/10.4025/actasciagron.v46i1.68231
Seção
Produção Vegetal

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus