Evaluation of soil fauna diversity in maize crops using Shannon, Margalef, and Pielou indices
Resumo
Soil organisms are vital for soil quality and can indicate environmental conditions. This study aimed to understand the diversity of soil fauna and its connection to plant residue decomposition and maize grain yield across various locations and crop seasons in a subtropical setting. We conducted experiments in Frederico Westphalen, Santa Maria, and São Vicente do Sul, Rio Grande do Sul State, Brazil, during two crop seasons in 2020/2021, totalling six experiments. We assessed parameters such as plant residue decomposition rate, soil fauna abundance, and grain yield. Results showed significant variations in decomposition rate, fauna abundance, and diversity measures (Shannon, Margalef, and Pielou indices, plus relative frequency) across environments. Four taxonomic groups comprised over 80% of collected individuals, with Araneae and Coleoptera showing more than half of relative frequency Our analysis revealed that areas with higher grain yields had faster decomposition rates, suggesting they fostered greater organism activity and nutrient cycling, indicating their potential as soil quality indicators.
Downloads
Referências
Althaus, D., Gianello, C., Tedesco, M. J., Silva, K. J., Bissani, C. A., & Felisberto, R. (2018). Natural fertility and metals contents in soils of Rio Grande do Sul (Brazil). Revista Brasileira de Ciência do Solo, 42, 1-15. DOI: https://doi.org/10.1590/18069657rbcs20160418
Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves, J. L. M., & Sparovek, G. (2013). Koppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711-728. DOI: https://doi.org/10.1127/0941-2948/2013/0507
Baizán, S., Vicente, F., & Fernandez, A. M. (2021). Management influence on the quality of an agricultural soil destined for forage production and evaluated by physico-chemical and biological indicators. Sustainability, 13(9), 1-13. DOI: https://doi.org/10.3390/su13095159
Baretta, D., Bartz, M. L. C., Fachini, I., Anselmi, R., Zortéa, T., & Baretta, C. R. D. M. (2014). Soil fauna and its relation with environmental variables in soil management systems. Revista Ciência Agronômica, 45(5), 871-879. DOI: https://doi.org/10.1590/S1806-66902014000500002
Barreta, D., Santos, J. C. P, Segat, J. C., Geremia, E. V., Filho, L. C. I. O, & Alves, M. V. (2011). Fauna edáfica e qualidade do solo. In O. Klauberg Filho, À. L. Mafra, & L. C. Gatiboni (Eds.), Tópicos em ciência do solo (p. 119-170). Viçosa, MG: Sociedade Brasileira de Ciência do Solo.
Bartz, M. L. C., Pasini, A., & Brown, G. G. (2013). Earthworms as soil quality indicators in Brazilian no-tillage systems. Applied Soil Ecology, 69, 39-48. DOI: http://doi.org/10.1016/j.apsoil.2013.01.011
Basilio, F., Dias, T., Santana, M. M., Melo, J., Carvalho, L., Correia, P., & Cruz, C. (2022). Multiple modes of action are needed to unlock soil phosphorus fractions unavailable for plants: The example of bacteria-and fungi-based biofertilizers. Applied Soil Ecology, 178, 1-11. DOI: https://doi.org/10.1016/j.apsoil.2022.104550
Bernardes, A. C. C., Oliveira, O. C. C., Silva, R. A., Albuquerque, P. M. C., Rebêlo, J. M. M., Viana, J. H., & Siqueira, G. M. (2020). Abundance and diversity of beetles (Insecta: Coleoptera) in land use and management systems. Revista Brasileira de Ciência do Solo, 44, 1-14. DOI: https://doi.org/10.36783/18069657rbcs20190183
Bocock, K. L., & Gilbert, O. J. W. (1957). The disappearance of leaf litter under different woodland conditions. Plant and Soil, 9, 179-185. DOI: https://doi.org/10.1007/BF01398924
Briones, M. J. I., & Schmidt, O. (2017). Conventional tillage decreases the abundance and biomass of earthworms and alters their community structure in a global meta‐analysis. Global Change Biology, 23(10), 4396-4419. DOI: https://doi.org/10.1111/gcb.13744
Bünemann, E. K., Bongiorno, G., Bai, Z., Creamer, R. E., Deyn, G., Goede, R., … Brussaard, L. (2018). Soil quality – A critical review. Soil Biology and Biochemistry, 120, 105-125. DOI: https://doi.org/10.1016/j.soilbio.2018.01.030
Cai, A., Liang, G., Yang, W., Zhu, J., Han, T., Zhang, W., & Xu, M. (2021). Patterns and driving factors of litter decomposition across Chinese terrestrial ecosystems. Journal of Cleaner Production, 278, 123964. DOI: https://doi.org/10.1016/j.jclepro.2020.123964
Comissão de Química e Fertilidade do Solo [CQFS]. (2016). Manual de calagem e adubação para os Estados do Rio Grande do Sul e de Santa Catarina. s. l.: Sociedade Brasileira de Ciência do Solo- Núcleo Regional Sul.
Da Rosa, A. P. S. A., Emygdio, B. M., & Bispo, N. B. (2017). Indicações técnicas para o cultivo de milho e de sorgo no Rio Grande do Sul safras 2017/2018 e 2018/2019. Sertão, RS: Instituto Federal Sul-Rio-Grandense; Embrapa.
Fialho, J. S., Primo, A. A., Aguiar, M. I., Magalhães, R. B., Maia, L. S., Correia, M. E. F., ... Oliveira, T. S. (2021). Pedofauna diversity in traditional and agroforestry systems of the Brazilian semi-arid region. Journal of Arid Environments, 184, 104315. DOI: https://doi.org/10.1016/j.jaridenv.2020.104315
Góes, Q. R., Freitas, L. R., Lorentz, L. H., Vieira, F. C. B., & Weber, M. A. (2021). Análise da fauna edáfica em diferentes usos do solo no Bioma Pampa. Ciência Florestal, 31(1), 123-144. DOI: https://doi.org/10.5902/1980509832130
Hammer, O., Harper, D. A. T., & Ryan, P. D. (2021). PAST: paleontological statistics software package for education and data analysis. Retrieved on Oct. 10, 2022 from http://palaeo-electronica.org/2001_1/past/ issue1_01.htm
Innangi, M., Menta, C., Pinto, S., Danise, T., D’alessandro, F., & Fioretto, A. (2018). Integrating chemical, biological and soil fauna variables during beech leaf litter decay: A partial least squares approach for a comprehensive view of the decomposition process. Applied Soil Ecology, 130, 69-78. DOI: https://doi.org/10.1016/j.apsoil.2018.05.023
Ji, D., Ding, F., Dijkstra, F. A., Jia, Z., Li, S., & Wang, J. (2022). Crop residue decomposition and nutrient release are independently affected by nitrogen fertilization, plastic film mulching, and residue type. European Journal of Agronomy, 138, 126535. DOI: https://doi.org/10.1016/j.eja.2022.126535
Kraft, E., Oliveira Filho, L. C. I. D., Carneiro, M. C., Klauberg-Filho, O., Baretta, C. R. D. M., & Baretta, D. (2021). Edaphic fauna affects soybean productivity under no-till system. Scientia Agricola, 78(2), 1-11. DOI: https://doi.org/10.1590/1678-992X-2019-0137
Li, Y., Cui, S., Chang, S. X., & Zhang, Q. (2019). Liming effects on soil pH and crop yield depend on lime material type, application method and rate, and crop species: a global meta-analysis. Journal of Soils and Sediments, 19, 1393-1406. DOI: https://doi.org/10.1007/s11368-018-2120-2
Ma, L., Song, D., Liu, M., Li, Y., & Li, Y. (2022). Effects of earthworm activities on soil nutrients and microbial diversity under different tillage measures. Soil and Tillage Research, 222, 105441. DOI: https://doi.org/10.1016/j.still.2022.105441
Machado, D. L., Pereira, M. G., Correia, M. E. F., Diniz, A. R., & Menezes, C. E. G. (2015). Fauna edáfica na dinâmica sucessional da Mata Atlântica em floresta estacional semidecidual na Bacia do Rio Paraíba do Sul – RJ. Ciência Florestal, 25(1), 91-106. DOI: https://doi.org/10.1590/1980-509820152505091
Manu, M., Bancilă, R. I., Mountford, J. O., Marusca, T., Blaj, V. A., & Onete, M. (2022). Soil Mite (Acari: Mesostigmata) Communities and Their Relationships with Some Environmental Variables in Experimental Grasslands from Bucegi Mountains in Romania. Insects, 13(3), 285. DOI: https://doi.org/10.3390/insects13030285
Peña-Peña, K., & Irmler, U. (2016). Moisture seasonality, soil fauna, litter quality and land use as drivers of decomposition in Cerrado soils in SE-Mato Grosso, Brazil. Applied Soil Ecology, 107, 124-133. DOI: https://doi.org/10.1016/j.apsoil.2016.05.007
Peng, Y., Vesterdal, L., Peñuelas, J., Peguero, G., Wu, Q., Heděnec, P., Yu, K., & Wu, F. (2023). Soil fauna effects on litter decomposition are better predicted by fauna communities within litterbags than by ambient soil fauna communities. Plant and Soil, 487, 49-59. DOI: https://doi.org/10.1007/s11104-023-05902-1
Perry, D. A., Amaranthus, M. P., Borchers, J. G., Borchers, S. L., & Brainerd, R. E. (1989). Bootstrapping in ecosystems. BioScience, 39(4), 230-237. DOI: https://doi.org/10.2307/1311159
Pessotto, M. D. F., Santana, N. A., Jacques, R. J. S., Freiberg, J. A., Machado, D. N., Piazza, E. M., … Antoniolli, A. I. (2020). Relação do uso do solo com a diversidade e a atividade da fauna edáfica. Nativa, 8(3), 397-402. DOI: https://doi.org/10.31413/nativa.v8i3.9769
Pisoni, A., Pazini, J. D. B., & Seidel, E. J. (2023). Spatial and seasonal dynamics of rainfall in subtropical Brazil. Boletim de Ciências Geodésicas, 29(2), 1-11. DOI: https://doi.org/10.1590/s1982-21702023000200004
R Development Core Team. (2019). R: a language and environment for statistical computing. Vienna, AT: R Foundation for Statistical Computing.
Resende, A. S., Campello, E. F. C., Silva, G. T. A., Rodrigues, K. M., Oliveira, W. R. D., & Correia, M. E. F. (2013). Artrópodes do solo durante o processo de decomposição da matéria orgânica. Agronomia Colombiana, 31, 89-94.
Rosa, A. S., & Dalmolin, R. S. D. (2009). Fauna edáfica em solo construído, campo nativo e lavoura anual. Ciência Rural, 39(3), 913-917. DOI: https://doi.org/10.1590/S0103-84782009000300044
Santana, M. S., Andrade, E. M., Oliveira, V. R., Costa, B. B., Silva, V. C., Freitas, M. S. C., ... Giongo, V. (2021). Trophic groups of soil fauna in semiarid: Impacts of land use change, climatic seasonality, and environmental variables. Pedobiologia, 89, 150774. DOI: https://doi.org/10.1016/j.pedobi.2021.150774
Sarkar, B., Singh, M., Mandal, S., Churchman, G. J., & Bolan, N. S. (2018). Chapter 3 - Clay minerals-organic matter interactions in relation to carbon stabilization in soils. The Future of Soil Carbon, 2018, 71-86. DOI: https://doi.org/10.1016/B978-0-12-811687-6.00003-1
Saxena, K. G., & Rao, K. R. (2015). Soil biodiversity: Inventory, functions and management. Dehra Dun, IN: Bishen Singh Mahendra Pal Singh.
Silva, E., Lima, O. G., Andrade, D. P., & Brown, G. G. (2019). Earthworm populations in forestry plantations (Araucaria angustifolia, Pinus elliottii) and native atlantic forest in southern Brazil compared using two sampling methods. Pedobiologia, 72, 1-7. DOI: https://doi.org/10.1016/j.pedobi.2018.10.002
Siqueira, B., Nery, J. T., & Carfan, A. C. (2023). Relationship between the rainfall index for Southern Brazil and the indexes of the Tropical Pacific and the Tropical Atlantic Oceans. Acta Scientiarum. Technology, 45(1), 1-13. DOI: https://doi.org/10.4025/actascitechnol.v45i1.58368
Souza, S. T. D., Cassol, P. C., Baretta, D., Bartz, M. L. C., Klauberg Filho, O., Mafra, Á. L., & Rosa, M. G. D. (2016). Abundance and diversity of soil macrofauna in native forest, eucalyptus plantations, perennial pasture, integrated crop-livestock, and no-tillage cropping. Revista Brasileira de Ciência do Solo, 40, 1-14. DOI: https://doi.org/10.1590/18069657rbcs20150248
Thomas, R. J., & Asakawa, N. M. (1993). Decomposition of leaf litter from tropical forage grasses and legumes. Soil Biology and Biochemistry, 25(10), 1351-1361. DOI: https://doi.org/10.1016/0038-0717(93)90050-L
Zhang, X., Zhu, A., Xin, X., Yang, W., Zhang, J., & Ding, S. (2018). Tillage and residue management for long-term wheat-maize cropping in the North China Plain: I. Crop yield and integrated soil fertility index. Field Crops Research, 221, 157-165. DOI: https://doi.org/10.1016/j.fcr.2018.02.025
Zheng, X., Tao, Y., Wang, Z., Ma, C., He, H., & Yia, X. (2020). Soil macro-fauna respond to environmental variations along a coastal-inland gradient. PeerJ, 8, 1-17. DOI: https://doi.org/10.7717/peerj.9532
DECLARAÇÃO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.